1887

Abstract

Bacterial modular polyketide synthase (PKS) genes are commonly associated with another gene that encodes a thioesterase II (TEII) believed to remove aberrantly loaded substrates from the PKS. Co-expression of the TEII and genes encoding 6-deoxyerythronolide B synthase (DEBS) in hosts eliminated or significantly lowered production of 8,8′-deoxyoleandolide [15-nor-6-deoxyerythronolide B (15-nor-6dEB)], which arises from an acetate instead of a propionate starter unit. Disruption of the TEII gene in an industrial strain caused a notable amount of 15-norerythromycins to be produced by utilization of an acetate instead of a propionate starter unit and also resulted in moderately lowered production of erythromycin compared with the amount produced by the parental strain. A similar behaviour of the TEII gene was observed in strains that produce 6dEB and 15-methyl-6dEB. Direct biochemical analysis showed that the TEII enzyme favours hydrolysis of acetyl groups bound to the loading acyl carrier protein domain (ACP) of DEBS. These results point to a clear role of the TEII enzyme, i.e. removal of a specific type of acyl group from the ACP domain of the DEBS1 loading module.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26015-0
2003-08-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492213.html?itemId=/content/journal/micro/10.1099/mic.0.26015-0&mimeType=html&fmt=ahah

References

  1. Aparicio J. F., Molnar I., Schwecke T., Konig A., Haydock S. F., Khaw L. E., Staunton J., Leadlay P. F.. 1996; Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus : analysis of the enzymatic domains in the modular polyketide synthase. Gene169:9–16
    [Google Scholar]
  2. August P. R., Tang L., Yoon Y. J.. 9 other authors 1998; Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol5:69–79
    [Google Scholar]
  3. Brunker P., Minas W., Kallio P. T., Bailey J. E.. 1998; Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene ( vhb ). Microbiology144:2441–2448
    [Google Scholar]
  4. Burg R. W., Miller B. M., Baker E. E.. 12 other authors 1979; Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother15:361–367
    [Google Scholar]
  5. Butler A. R., Bate N., Cundliffe E.. 1999; Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae . Chem Biol6:287–292
    [Google Scholar]
  6. Caffrey P., Bevitt D. J., Staunton J., Leadlay P. F.. 1992; Identification of DEBS 1, DEBS 2 and DEBS 3, the multienzyme polypeptides of the erythromycin-producing polyketide synthase from Saccharopolyspora erythraea . FEBS Lett304:225–228
    [Google Scholar]
  7. Carreras C., Frykman S., Ou S.. 2002; Saccharopolyspora erythraea -catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycins. J Biotechnol92:217–228
    [Google Scholar]
  8. Cortes J., Haydock S. F., Roberts G. A., Bevitt D. J., Leadlay P. F.. 1990; An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea . Nature348:176–178
    [Google Scholar]
  9. Cronan J. E. Jr, Charles O.. 1996; Biosynthesis of member lipids. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp629–630 Edited by Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
  10. Dayem L. C., Carney J. R., Santi D. V., Pfeifer B. A., Khosla C., Kealey J. T.. 2002; Metabolic engineering of a methylmalonyl-CoA mutase-epimerase pathway for complex polyketide biosynthesis in Escherichia coli . Biochemistry41:5193–5201
    [Google Scholar]
  11. Doi-Katayama Y., Yoon Y. J., Choi C. Y., Yu T. W., Floss H. G., Hutchinson C. R.. 2000; Thioesterases and the premature termination of polyketide chain elongation in rifamycin B biosynthesis by Amycolatopsis mediterranei S699. J Antibiot (Tokyo53:484–495
    [Google Scholar]
  12. Donadio S., Katz L.. 1992; Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea . Gene111:51–60
    [Google Scholar]
  13. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L.. 1991; Modular organization of genes required for complex polyketide biosynthesis. Science252:675–679
    [Google Scholar]
  14. Egan R. S., Martin J. R.. 1970; Structure of lankamycin. J Am Chem Soc92:4129–4130
    [Google Scholar]
  15. Evans P. D., Cook S. N., Riggs P. D., Noren C. J.. 1995; LITMUS: multipurpose cloning vectors with a novel system for bidirectional in vitro transcription. Biotechniques19:130–135
    [Google Scholar]
  16. Flett F., Mersinias V., Smith C. P.. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett155:223–229
    [Google Scholar]
  17. Gokhale R. S., Hunziker D., Cane D. E., Khosla C.. 1999; Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chem Biol6:117–125
    [Google Scholar]
  18. Haydock S. F., Aparicio J. F., Molnar I.. 7 other authors 1995; Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA : acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett374:246–248
    [Google Scholar]
  19. Heathcote M. L., Staunton J., Leadlay P. F.. 2001; Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units. Chem Biol8:207–220
    [Google Scholar]
  20. Hu Z., Bao K., Zhou X., Zhou Q., Hopwood D. A., Kieser T., Deng Z.. 1994; Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp. FR-008. Mol Microbiol14:163–172
    [Google Scholar]
  21. Hu Z., Hopwood D. A., Hutchinson C. R.. 2003; Enhancing heterologous polyketide production in Streptomyces by exploiting plasmid co-integration. J Ind Microbiol Biotechnol in press
    [Google Scholar]
  22. Jacobsen J. R., Hutchinson C. R., Cane D. E., Khosla C.. 1997; Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science277:367–369
    [Google Scholar]
  23. Kao C. M., Katz L., Khosla C.. 1994; Engineered biosynthesis of a complete macrolactone in a heterologous host. Science265:509–512
    [Google Scholar]
  24. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich: John Innes Centre;
  25. Kim B. S., Cropp T. A., Beck B. J., Sherman D. H., Reynolds K. A.. 2002; Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin. J Biol Chem277:48028–48034
    [Google Scholar]
  26. Kohli R. M., Trauger J. W., Schwarzer D., Marahiel M. A., Walsh C. T.. 2001; Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry40:7099–7108
    [Google Scholar]
  27. Lau J., Cane D. E., Khosla C.. 2000; Substrate specificity of the loading didomain of the erythromycin polyketide synthase. Biochemistry39:10514–10520
    [Google Scholar]
  28. Liou G. F., Lau J., Cane D. E., Khosla C.. 2003; Quantitative analysis of loading and extender acyltransferases of modular polyketide synthases. Biochemistry42:200–207
    [Google Scholar]
  29. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68
    [Google Scholar]
  30. Marsden A. F., Caffrey P., Aparicio J. F., Loughran M. S., Staunton J., Leadlay P. F.. 1994; Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science263:378–380
    [Google Scholar]
  31. Marsden A. F., Wilkinson B., Cortes J., Dunster N. J., Staunton J., Leadlay P. F.. 1998; Engineering broader specificity into an antibiotic-producing polyketide synthase. Science279:199–202
    [Google Scholar]
  32. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C.. 1993; Engineered biosynthesis of novel polyketides. Science262:1546–1550
    [Google Scholar]
  33. Molnar I., Aparicio J. F., Haydock S. F., Khaw L. E., Schwecke T., Konig A., Staunton J., Leadlay P. F.. 1996; Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus : analysis of genes flanking the polyketide synthase. Gene169:1–7
    [Google Scholar]
  34. Murli S., Kennedy J., Dayem L. C., Carney J. R., Kealey J. T.. 2003; Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J Ind Microbiol Biotechnol in press
    [Google Scholar]
  35. O'Hagan D.. 1993; The Polyketide Metabolites Chichester: Ellis Horwood;
  36. Pacey M. S., Dirlam J. P., Geldart R. W.. 7 other authors 1998; Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338 pIG1. I. Fermentation, isolation and biological activity. J Antibiot (Tokyo)51:1029–1034
    [Google Scholar]
  37. Pfeifer B. A., Admiraal S. J., Gramajo H., Cane D. E., Khosla C.. 2001; Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli . Science291:1790–1792
    [Google Scholar]
  38. Pfeifer B., Hu Z., Licari P., Khosla C.. 2002; Process and metabolic strategies for improved production of Escherichia coli -derived 6-deoxyerythronolide B. Appl Environ Microbiol68:3287–3292
    [Google Scholar]
  39. Pieper R., Ebert-Khosla S., Cane D., Khosla C.. 1996; Erythromycin biosynthesis: kinetic studies on a fully active modular polyketide synthase using natural and unnatural substrates. Biochemistry35:2054–2060
    [Google Scholar]
  40. Quadri L. E., Weinreb P. H., Lei M., Nakano M. M., Zuber P., Walsh C. T.. 1998; Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry37:1585–1595
    [Google Scholar]
  41. Schneider A., Marahiel M. A.. 1998; Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis . Arch Microbiol169:404–410
    [Google Scholar]
  42. Schwarzer D., Mootz H. D., Marahiel M. A.. 2001; Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. Chem Biol8:997–1010
    [Google Scholar]
  43. Schwarzer D., Mootz H. D., Linne U., Marahiel M. A.. 2002; Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci U S A99:14083–14088
    [Google Scholar]
  44. Schwecke T., Aparicio J. F., Molnar I.. 7 other authors 1995; The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci U S A92:7839–7843
    [Google Scholar]
  45. Tang L., Fu H., Betlach M. C., McDaniel R.. 1999; Elucidating the mechanism of chain termination switching in the picromycin/methymycin polyketide synthase. Chem Biol6:553–558
    [Google Scholar]
  46. Tang L., Shah S., Chung L., Carney J., Katz L., Khosla C., Julien B.. 2000; Cloning and heterologous expression of the epothilone gene cluster. Science287:640–642
    [Google Scholar]
  47. Vieira J., Messing J.. 1987; Production of single-stranded plasmid DNA. Methods Enzymol153:3–11
    [Google Scholar]
  48. Weber J. M., Leung J. O., Swanson S. J., Idler K. B., McAlpine J. B.. 1991; An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea . Science252:114–117
    [Google Scholar]
  49. Wiesmann K. E., Cortes J., Brown M. J., Cutter A. L., Staunton J., Leadlay P. F.. 1995; Polyketide synthesis in vitro on a modular polyketide synthase. Chem Biol2:583–589
    [Google Scholar]
  50. Wohlert S., Lomovskaya N., Kulowski K., Fonstein L., Occi J. L., Gewain K. M., MacNeil D. J., Hutchinson C. R.. 2001; Insights about the biosynthesis of the avermectin deoxysugar l-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans . Chem Biol8:681–700
    [Google Scholar]
  51. Xue Y., Zhao L., Liu H. W., Sherman D. H.. 1998; A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae : architecture of metabolic diversity. Proc Natl Acad Sci U S A95:12111–12116
    [Google Scholar]
  52. Ziermann R., Betlach M. C.. 1999; Recombinant polyketide synthesis in Streptomyces : engineering of improved host strains. Biotechniques26:106–110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26015-0
Loading
/content/journal/micro/10.1099/mic.0.26015-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error