1887

Abstract

In , expression of the gene, encoding glutamate dehydrogenase, and the operon, involved in arginine catabolism, requires SigL (σ)-containing RNA polymerase as well as RocR, a positive regulator of the NtrC/NifA family. The RocR protein was purified and shown to bind specifically to the intergenic region located between and the operon. DNaseI footprinting experiments were used to define the RocR-binding site as an 8 bp inverted repeat, separated by one base pair, forming an imperfect palindrome which is present twice within the intergenic region, acting as both a downstream activating sequence (DAS) and an upstream activating sequence (UAS). Point mutations in either of these two sequences significantly lowered expression of both and . This bidirectional enhancer element retained partial activity even when moved 9 kb downstream of the promoter. Electron microscopy experiments indicated that an intrinsically curved region is located between the UAS/DAS region and the promoter of the operon. This curvature could facilitate interaction of RocR with σ-RNA polymerase at the promoter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26013-0
2003-03-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149739.html?itemId=/content/journal/micro/10.1099/mic.0.26013-0&mimeType=html&fmt=ahah

References

  1. Baumberg S., Klingel U. 1993; Biosynthesis of arginine, proline and related compounds. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp  229–306 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Belitsky B., Sonenshein A. L. 1998; Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305
    [Google Scholar]
  3. Belitsky B., Sonenshein A. L. 1999; An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis . Proc Natl Acad Sci U S A 96:10290–10295
    [Google Scholar]
  4. Bolshoy A., McNamara P., Harrington R. E., Trifonov E. N. 1991; Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A 88:2312–2316
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Calogero S., Gardan R., Glaser P., Schweitzer J., Rapoport G., Débarbouillé M. 1994; RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis , belongs to the NtrC/NifA family of transcriptional activators. J Bacteriol 176:1234–1241
    [Google Scholar]
  7. Cunin R., Glandsdorff N., Pierard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352
    [Google Scholar]
  8. De Santis P., Palleschi A., Savino M., Scipioni A. 1988; A theoretical model of DNA curvature. Biophys Chem 32:305–317
    [Google Scholar]
  9. Derré I., Rapoport G., Msadek T. 1999; CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–132
    [Google Scholar]
  10. Dubochet J., Ducommun M., Zollinger M., Kellenberger E. 1971; A new preparation method for dark-field electron microscopy of macromolecules. J Ultrastruct Res 35:147–167
    [Google Scholar]
  11. Farez-Vidal M. E., Wilson T. J., Davidson B. E., Howlett G. J., Austin S., Dixon R. A. 1996; Effector-induced self association and conformation changes in the enhancer-binding protein NtrC. Mol Microbiol 22:779–788
    [Google Scholar]
  12. Fisher S. 1993; Utilization of amino acids and other nitrogen containing compounds. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp  221–228 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Fisher S., Débarbouillé M. 2002; Nitrogen source utilization and its regulation. In Bacillus subtilis and its Closest Relatives. From Genes to Cells pp  181–191 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Fouet A., Sonenshein A. L. 1990; A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis . J Bacteriol 172:835–844
    [Google Scholar]
  15. Gardan R., Rapoport G., Débarbouillé M. 1995; Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis . J Mol Biol 249:843–856
    [Google Scholar]
  16. Gardan R., Rapoport G., Débarbouillé M. 1997; Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis . Mol Microbiol 24:825–837
    [Google Scholar]
  17. Gibson T. J. 1984 Studies on the Epstein–Barr Virus Genome Cambridge: University of Cambridge;
    [Google Scholar]
  18. Harwood C. R., Baumberg S. 1977; Arginine hydroxamate resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol 100:177–188
    [Google Scholar]
  19. Kabsch W., Sander S., Trifonov E. N. 1982; The ten helical twist angles of B-DNA. Nucleic Acids Res 10:1097–1104
    [Google Scholar]
  20. Koo H.-S., Crothers D. M. 1988; Calibration of DNA curvature and a unified description of sequence-directed bending. Proc Natl Acad Sci U S A 85:1763–1767
    [Google Scholar]
  21. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382
    [Google Scholar]
  22. Kustu S., Santero E., Keener J., Popham D., Weiss D. 1989; Expression of sigma 54 ( ntrA )-dependent genes is probably united by a common mechanism. Microbiol Rev 53:367–376
    [Google Scholar]
  23. Kustu S., North A. K., Weiss D. 1991; Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem Sci 16:397–402
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  25. Larquet E., Furrer P., Stasiak A., Dubochet J., Revet B. 1995; DNA ResCue: 3D reconstruction and simulation curvature of DNA from the analysis of electron micrographs. ( Ninth Conversation in Biomolecular Stereodynamics , June 20–24, 1995). J Biomol Struct Dyn 12:A134
    [Google Scholar]
  26. Le Cam E., Delain E. 1995; Nucleic acids–ligand interactions. In Visualization of Nucleic Acids pp  333–358 Edited by Morel G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  27. Lereclus D., Arantès O. 1992; spbA locus ensures the segregational stability of pHT1030, a novel type of Gram-positive replicon. Mol Microbiol 6:35–46
    [Google Scholar]
  28. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671
    [Google Scholar]
  29. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G. 1992; Mutagenesis of the Bacillus subtilis “−12, −24” promotor of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol 226:85–99
    [Google Scholar]
  30. Merrick M. J. 1993; In a class of its own – the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol 10:903–909
    [Google Scholar]
  31. Miller C., Baumberg S., Stockley P. G. 1997; Operator interactions by the Bacillus subtilis arginine repressor/activator AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol Microbiol 26:37–48
    [Google Scholar]
  32. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Morett E., Segovia L. 1993; The σ54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074
    [Google Scholar]
  34. Muzard G., Theveny B., Revet B. 1990; Electron microscopy mapping of pBR322 DNA curvature. Comparison with theoretical models. EMBO J 9:1289–1298
    [Google Scholar]
  35. Perez-Martin J., de Lorenzo V. 1996; ATP binding to the sigma 54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. Cell 86:331–339
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
    [Google Scholar]
  38. Thei Dame R., Wyman C., Goosen N. 2001; Structural basis for preferential binding of H-NS to curved DNA. Biochimie 83:231–234
    [Google Scholar]
  39. Tricot C., Stalon V., Legrain C. 1991; Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways. J Gen Microbiol 137:2911–2918
    [Google Scholar]
  40. Ulanovsky L., Bodner M., Trifonov E. N., Choder M. 1986; Curved DNA: design, synthesis and circularization. Proc Natl Acad Sci U S A 83:862–866
    [Google Scholar]
  41. Wikstrom P., O'Neil E., Shingler V. 2001; The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerization. J Mol Biol 314:971–984
    [Google Scholar]
  42. Wilson T. J., Maroudas G., Howlett G. J., Davidson B. D. 1994; Ligand-induced self association of the Escherichia coli regulatory protein TyrR. J Mol Biol 238:309–318
    [Google Scholar]
  43. Wyman C., Rombel I., North A., Bustamante C., Kustu S. 1997; Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science 275:1658–1661
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26013-0
Loading
/content/journal/micro/10.1099/mic.0.26013-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error