1887

Abstract

A new genetic locus was identified in which is required for optimal synthesis of the light-harvesting spectral complexes as well as for optimal growth under anaerobic conditions with dimethyl sulfoxide (DMSO) as a terminal electron acceptor. The primary structure of the deduced gene product shows significant homology to the receiver domain of known response regulators common to bacterial two-component systems. However, site-directed mutagenesis revealed that the Osp protein appears not to be involved in a phospho-relay signal transduction pathway. Paradoxically, the effect of the Osp protein upon spectral complex levels is exerted at the transcriptional level of photosynthesis gene expression. The absence of the Osp protein does not appear to have a general effect on house-keeping metabolism. In cells lacking Osp, the levels of DMSO reductase appear to be normal. The quaternary structure of the Osp protein was determined to be a homodimer and it was directly demonstrated that Osp does not bind to the promoter region of photosynthesis genes as judged by mobility-shift experiments and primary structure analysis.

Keyword(s): PS, photosynthesis
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26010-0
2003-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic149949.html?itemId=/content/journal/micro/10.1099/mic.0.26010-0&mimeType=html&fmt=ahah

References

  1. Abada E. M., Balzer A., Jager A., Klug G. 2002; Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system. Mol Genet Genomics 267:202–209
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1988 Current Protocols in Molecular Biology New York: Greene Publishing Associates & Wiley;
    [Google Scholar]
  3. Cho H. S., Lee S. Y., Yan D., Pan X., Parkinson J. S., Kustu S., Wemmer D. E., Pelton J. G. 2000; NMR structure of activated CheY. J Mol Biol 297:543–551
    [Google Scholar]
  4. Choudhary M., Mackenzie C., Nereng K. S., Sodergren E., Weinstock G. M., Kaplan S. 1994; Multiple chromosomes in bacteria: structure and function of chromosome II of Rhodobacter sphaeroides 2.4.1T . J Bacteriol 176:7694–7702
    [Google Scholar]
  5. Comolli J. C., Carl A. J., Hall C., Donohue T. 2002; Transcriptional activation of the Rhodobacter sphaeroides cytochrome c 2 gene P2 promoter by the response regulator PrrA. J Bacteriol 184:390–399
    [Google Scholar]
  6. Davis J., Donohue T. J., Kaplan S. 1988; Construction, characterization, and complementation of a Puf mutant of Rhodobacter sphaeroides . J Bacteriol 170:320–329
    [Google Scholar]
  7. Elsen S., Dischert W., Colbeau A., Bauer C. E. 2000; Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB–RegA two-component regulatory system. J Bacteriol 182:2831–2837
    [Google Scholar]
  8. Eraso J. M., Kaplan S. 1994; prrA , a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides . J Bacteriol 176:32–43
    [Google Scholar]
  9. Eraso J. M., Kaplan S. 1995; Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides : a mutant histidine kinase. J Bacteriol 177:2695–2706
    [Google Scholar]
  10. Eraso J. M., Kaplan S. 1996; Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J Bacteriol 178:7037–7046
    [Google Scholar]
  11. Eraso J. M., Kaplan S. 2000; From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39:2052–2062
    [Google Scholar]
  12. Fiedler U., Weiss V. 1995; A common switch in activation of the response regulators NtrC and PhoB: phosphorylation induces dimerization of the receiver modules. EMBO J 14:3696–3705
    [Google Scholar]
  13. Gomelsky M., Kaplan S. 1997; Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 179:128–134
    [Google Scholar]
  14. Jessee J. 1986; New subcloning efficiency competent cells: >1×106 transformants/μg. Focus 8:9
    [Google Scholar]
  15. Joshi H. M., Tabita F. R. 1996; A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci U S A 93:14515–14520
    [Google Scholar]
  16. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  17. Kiley P. J., Kaplan S. 1988; Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides . Microbiol Rev 52:50–69
    [Google Scholar]
  18. Lee J. K., Kaplan S. 1992; Isolation and characterization of trans -acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides . J Bacteriol 174:1158–1171 erratum 174, 2418
    [Google Scholar]
  19. Lee J. K., Kaplan S. 1995; Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides . Analysis of the cis -acting downstream regulatory sequence. J Biol Chem 270:20453–20458
    [Google Scholar]
  20. Lenz O., Schwartz E., Dernedde J., Eitinger M., Friedrich B. 1994; The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176:4385–4393
    [Google Scholar]
  21. Lukat G. S., Stock A. M., Stock J. B. 1990; Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29:5436–5442
    [Google Scholar]
  22. Lukat G. S., Lee B. H., Mottonen J. M., Stock A. M., Stock J. B. 1991; Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem 266:8348–8354
    [Google Scholar]
  23. McEwan A. G. 1994; Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek 66:151–164
    [Google Scholar]
  24. McEwan A. G., Wetzstein H. G., Ferguson S. J., Jackson J. B. 1985; Periplasmic location of the terminal oxidoreductase in trimethylamine- N -oxide and dimethylsulfoxide respiration in photosynthetic bacterium Rhodopseudomonas capsulata . Biochim Biophys Acta 806:140–147
    [Google Scholar]
  25. Mouncey N. J., Kaplan S. 1998; Redox-dependent gene regulation in Rhodobacter sphaeroides 2.4.1T: effects on dimethyl sulfoxide reductase ( dor ) gene expression. J Bacteriol 180:5612–5618
    [Google Scholar]
  26. Oelmuller U., Kruger N., Steinbuchel A., Friedrich C. G. 1990; Isolation of procaryotic RNA and detection of specific mRNA with biotinylated probes. J Microbiol Methods 11:73–84
    [Google Scholar]
  27. O'Gara J. P., Kaplan S. 1997; Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J Bacteriol 179:1951–1961
    [Google Scholar]
  28. O'Gara J. P., Eraso J. M., Kaplan S. 1998; A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 180:4044–4050
    [Google Scholar]
  29. Oh J.-I., Bowien B. 1999; Dual control by regulatory gene fdsR of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha . Mol Microbiol 34:365–376
    [Google Scholar]
  30. Oh J.-I., Kaplan S. 1999; The cbb 3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38:2688–2696
    [Google Scholar]
  31. Oh J.-I., Kaplan S. 2000; Redox signaling: globalization of gene expression. EMBO J 19:4237–4247
    [Google Scholar]
  32. Oh J.-I., Kaplan S. 2001; Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39:1116–1123
    [Google Scholar]
  33. Oh J.-I., Eraso J. M., Kaplan S. 2000; Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 182:3081–3087
    [Google Scholar]
  34. Oh J.-I., Ko I.-J., Kaplan S. 2001; The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J Bacteriol 183:6807–6814
    [Google Scholar]
  35. Parson W. W. 1975; Quinones as secondary electron acceptors. In The Photosynthetic Bacteria pp  455–469 Edited by Clayton R. K., Sistrom W. R. New York: Plenum;
    [Google Scholar]
  36. Potter C. A., Ward A., Laguri C., Williamson M. P., Henderson P. J., Phillips-Jones M. K. 2002; Expression, purification and characterization of full-length histidine protein kinase RegB from Rhodobacter sphaeroides . J Mol Biol 320:201–213
    [Google Scholar]
  37. Qian Y., Tabita F. R. 1996; A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides . J Bacteriol 178:12–18
    [Google Scholar]
  38. Rios-Velazquez C., Cox R. L., Donohue T. J. 2001; Characterization of Rhodobacter sphaeroides cytochrome c 2 proteins with altered heme attachment sites. Arch Biochem Biophys 389:234–244
    [Google Scholar]
  39. Rödig R., Jock S., Klug G. 1999; Coregulation of the synthesis of bacteriochlorophyll and pigment-binding proteins in Rhodobacter capsulatus . Arch Microbiol 171:198–204
    [Google Scholar]
  40. Roh J. H., Kaplan S. 2000; Genetic and phenotypic analyses of the rdx locus of Rhodobacter sphaeroides 2.4.1. J Bacteriol 182:3475–3481
    [Google Scholar]
  41. Romagnoli S., Packer H. L., Armitage J. P. 2002; Tactic responses to oxygen in the phototrophic bacterium Rhodobacter sphaeroides WS8N. J Bacteriol 184:5590–5598
    [Google Scholar]
  42. Sabaty M., Kaplan S. 1996; mgpS , a complex regulatory locus involved in the transcriptional control of the puc and puf operons in Rhodobacter sphaeroides 2.4.1. J Bacteriol 178:35–45
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sanders D. A., Gillece-Castro B. L., Stock A. M., Burlingame A. L., Koshland D. E. Jr 1989; Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem 264:21770–21778
    [Google Scholar]
  45. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626
    [Google Scholar]
  46. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technol 1:784–791
    [Google Scholar]
  47. Stock A. M., Martinez-Hackert E., Rasmussen B. F., West A. H., Stock J. B., Ringe D., Petsko G. A. 1993; Structure of the Mg2+-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32:13375–13380
    [Google Scholar]
  48. Swem L. R., Elsen S., Bird T. H., Swem D. L., Koch H. G., Myllykallio H., Daldal F., Bauer C. E. 2001; The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus . J Mol Biol 309:121–138
    [Google Scholar]
  49. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078
    [Google Scholar]
  50. van Neil C. B. 1944; The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacterial Rev 8:1–118
    [Google Scholar]
  51. West A. H., Stock A. M. 2001; Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376
    [Google Scholar]
  52. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  53. Zeilstra-Ryalls J., Gomelsky M., Eraso J. M., Yeliseev A., O'Gara J., Kaplan S. 1998; Control of photosystem formation in Rhodobacter sphaeroides . J Bacteriol 180:2801–2909
    [Google Scholar]
  54. Zeilstra-Ryalls J. H., Kaplan S. 1995; Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol 177:6422–6431
    [Google Scholar]
  55. Zeilstra-Ryalls J. H., Kaplan S. 1996; Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol 178:985–993
    [Google Scholar]
  56. Zeilstra-Ryalls J. H., Gabbert K., Mouncey N. J., Kaplan S., Kranz R. G. 1997; Analysis of the fnrL gene and its function in Rhodobacter capsulatus . J Bacteriol 179:7264–7273
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26010-0
Loading
/content/journal/micro/10.1099/mic.0.26010-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error