1887

Abstract

Bacteria have developed a wide arsenal of survival strategies to cope with the specific problems posed by their environment. These processes are carefully regulated and complex signal transduction cascades ensure proper activation of the adequate adaptive response. An intriguing observation is that generally the regulation pathways of the different adaptive processes are highly intertwined. In this review, this phenomenon is illustrated by the regulation of genetic competence development in . The different regulation pathways which make up the gene regulation network that controls the development of competence are described, and their connections to other adaptive processes in are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26003-0
2003-01-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_2.html?itemId=/content/journal/micro/10.1099/mic.0.26003-0&mimeType=html&fmt=ahah

References

  1. Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I., Dubnau D. 2002; Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol44:1561–1573
    [Google Scholar]
  2. Bai U, Mandic-Mulec I., Smith I. 1993; SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis , by protein-protein interaction. Genes Dev7:139–148
    [Google Scholar]
  3. Becskei A., Serrano L. 2000; Engineering stability in gene networks by autoregulation. Nature405:590–593
    [Google Scholar]
  4. Bird T. H, Grimsley J. K, Hoch J. A., Spiegelman G. B. 1993; Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Mol Microbiol9:741–749
    [Google Scholar]
  5. Burbulys D, Trach K. A., Hoch J. A. 1991; Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell64:545–552
    [Google Scholar]
  6. Chung Y. S, Breidt F., Dubnau D. 1998; Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol Microbiol29:905–913
    [Google Scholar]
  7. Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G., van Sinderen D. 1993; Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol8:821–831
    [Google Scholar]
  8. Dahl M. K, Msadek T, Kunst F., Rapoport G. 1992; The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem267:14509–14514
    [Google Scholar]
  9. D'Souza C, Nakano M. M., Zuber P. 1994; Identification of comS , a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A91:9397–9401
    [Google Scholar]
  10. Dubnau D. 1993; Genetic exchange and homologous recombination. In Bacillus subtilis and Other Gram-positive Bacteria pp555–584 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Dubnau D. 1999; DNA uptake in bacteria. Annu Rev Microbiol53:217–244
    [Google Scholar]
  12. Featherstone D. E., Broadie K. 2002; Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays24:267–274
    [Google Scholar]
  13. Ferrari E, Henner D. J, Perego M., Hoch J. A. 1988; Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J Bacteriol170:289–295
    [Google Scholar]
  14. Gaur N. K, Cabane K., Smith I. 1988; Structure and expression of the Bacillus subtilis sin operon. J Bacteriol170:1046–1053
    [Google Scholar]
  15. Green B. D, Olmedo G., Youngman P. 1991; A genetic analysis of Spo0A structure and function. Res Microbiol142:825–830
    [Google Scholar]
  16. Hahn J., Dubnau D. 1991; Growth stage signal transduction and the requirements for srfA induction in development of competence. J Bacteriol173:7275–7282
    [Google Scholar]
  17. Hahn J, Roggiani M., Dubnau D. 1995a; The major role of Spo0A in genetic competence is to downregulate abrB , an essential competence gene. J Bacteriol177:3601–3605
    [Google Scholar]
  18. Hahn J, Bylund J, Haines M, Higgins M., Dubnau D. 1995b; Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis. Mol Microbiol18:755–767
    [Google Scholar]
  19. Hahn J, Luttinger A., Dubnau D. 1996; Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis. Mol Microbiol21:763–775
    [Google Scholar]
  20. Haijema B. J, van Sinderen D, Winterling K, Kooistra J, Venema G., Hamoen L. W. 1996; Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol Microbiol22:75–85
    [Google Scholar]
  21. Haijema B. J, Hahn J, Haynes J., Dubnau D. 2001; A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol40:52–64
    [Google Scholar]
  22. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis. Microbiol Rev59:1–30
    [Google Scholar]
  23. Hamoen L. W, Eshuis H, Jongbloed J, Venema G., van Sinderen D. 1995; A small gene, designated comS , located within the coding region of the fourth amino acid-activation domain of srfA , is required for competence development in Bacillus subtilis. Mol Microbiol15:55–63
    [Google Scholar]
  24. Hamoen L. W, Van Werkhoven A. F, Venema G., Dubnau D. 2000; The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc Natl Acad Sci U S A97:9246–9251
    [Google Scholar]
  25. Henner D. J, Yang M., Ferrari E. 1988; Localization of Bacillus subtilis sacU (Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J Bacteriol170:5102–5109
    [Google Scholar]
  26. Hoa T. T, Tortosa P, Albano M., Dubnau D. 2002; Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol43:15–26
    [Google Scholar]
  27. Kong L, Siranosian K. J, Grossman A. D., Dubnau D. 1993; Sequence and properties of mecA , a negative regulator of genetic competence in Bacillus subtilis. Mol Microbiol9:365–373
    [Google Scholar]
  28. Kunst F, Debarbouille M, Msadek T, Young M, Mauel C, Karamata D, Klier A, Rapoport G., Dedonder R. 1988; Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J Bacteriol170:5093–5101
    [Google Scholar]
  29. Lazazzera B. A, Solomon J. M., Grossman A. D. 1997; An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis Cell89:917–925
    [Google Scholar]
  30. Lazazzera B. A, Kurtser I. G, McQuade R. S., Grossman A. D. 1999; An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol181:5193–5200
    [Google Scholar]
  31. Little J. W, Shepley D. P., Wert D. W. 1999; Robustness of a gene regulatory circuit. EMBO J18:4299–4307
    [Google Scholar]
  32. Liu J., Zuber P. 1998; A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol180:4243–4251
    [Google Scholar]
  33. Liu J, Cosby W. M., Zuber P. 1999; Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol33:415–428
    [Google Scholar]
  34. Liu L, Nakano M. M, Lee O. H., Zuber P. 1996; Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol178:5144–5152
    [Google Scholar]
  35. Londono-Vallejo J. A., Dubnau D. 1994; Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J Bacteriol176:4642–4645
    [Google Scholar]
  36. Lorenz M. G., Wackernagel W. 1994; Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev58:563–602
    [Google Scholar]
  37. Luttinger A, Hahn J., Dubnau D. 1996; Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol19:343–356
    [Google Scholar]
  38. Magnuson R, Solomon J., Grossman A. D. 1994; Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell77:207–216
    [Google Scholar]
  39. Mandic-Mulec I, Doukhan L., Smith I. 1995; The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J Bacteriol177:4619–4627
    [Google Scholar]
  40. Maslov S., Sneppen K. 2002; Specificity and stability in topology of protein networks. Science296:910–913
    [Google Scholar]
  41. Msadek T, Kunst F., Rapoport G. 1994; MecB of Bacillus subtilis , a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc Natl Acad Sci U S A91:5788–5792
    [Google Scholar]
  42. Msadek T, Kunst F., Rapoport G. 1995; A signal transduction network in Bacillus subtilis includes the DegS/DegU and ComP/ComA two-component systems. In Two-Component Signal Transduction pp447–471 Edited by Hoch J. A., Silhavy T. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Msadek T, Dartois V, Kunst F, Herbaud M. L, Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol27:899–914
    [Google Scholar]
  44. Nakano M. M, Magnuson R, Myers A, Curry J, Grossman A. D., Zuber P. 1991; srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol173:1770–1778
    [Google Scholar]
  45. Nakano M. M, Nakano S., Zuber P. 2002; Spx (YjbD), a negative effector of competence in Bacillus subtilis , enhances ClpC-MecA-ComK interaction. Mol Microbiol44:1341–1349
    [Google Scholar]
  46. Ogura M, Ohshiro Y, Hirao S., Tanaka T. 1997; A new Bacillus subtilis gene, med , encodes a positive regulator of comK. J Bacteriol179:6244–6253
    [Google Scholar]
  47. Ogura M, Liu L, Lacelle M, Nakano M. M., Zuber P. 1999; Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol Microbiol32:799–812
    [Google Scholar]
  48. O'Reilly M., Devine K. M. 1997; Expression of AbrB, a transition state regulator from Bacillus subtilis , is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli. J Bacteriol179:522–529
    [Google Scholar]
  49. Perego M. 1998; Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol6:366–370
    [Google Scholar]
  50. Perego M, Glaser P., Hoch J. A. 1996; Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol Microbiol19:1151–1157
    [Google Scholar]
  51. Persuh M, Turgay K, Mandic-Mulec I., Dubnau D. 1999; The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol Microbiol33:886–894
    [Google Scholar]
  52. Persuh M, Mandic-Mulec I., Dubnau D. 2002; A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J Bacteriol184:2310–2313
    [Google Scholar]
  53. Predich M, Nair G., Smith I. 1992; Bacillus subtilis early sporulation genes kinA , spo0F , and spo0A are transcribed by the RNA polymerase containing sigma H. J Bacteriol174:2771–2778
    [Google Scholar]
  54. Provvedi R., Dubnau D. 1999; ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol31:271–280
    [Google Scholar]
  55. Provvedi R, Chen I., Dubnau D. 2001; NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol Microbiol40:634–644
    [Google Scholar]
  56. Rashid M. H, Tamakoshi A., Sekiguchi J. 1996; Effects of mecA and mecB ( clpC ) mutations on expression of sigD , which encodes an alternative sigma factor, and autolysin operons and on flagellin synthesis in Bacillus subtilis. J Bacteriol178:4861–4869
    [Google Scholar]
  57. Ratnayake-Lecamwasam M, Serror P, Wong K. W., Sonenshein A. L. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev15:1093–1103
    [Google Scholar]
  58. Redfield R. J. 1988; Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all?. Genetics119:213–221
    [Google Scholar]
  59. Robertson J. B, Gocht M, Marahiel M. A., Zuber P. 1989; AbrB, a regulator of gene expression in Bacillus , interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc Natl Acad Sci U S A86:8457–8461
    [Google Scholar]
  60. Roggiani M., Dubnau D. 1993; ComA, a phosphorylated response regulator protein of Bacillus subtilis , binds to the promoter region of srfA. J Bacteriol175:3182–3187
    [Google Scholar]
  61. Serror P., Sonenshein A. L. 1996; CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol178:5910–5915
    [Google Scholar]
  62. Siranosian K. J., Grossman A. D. 1994; Activation of spo0A transcription by sigma H is necessary for sporulation but not for competence in Bacillus subtilis. J Bacteriol176:3812–3815
    [Google Scholar]
  63. Slack F. J, Mueller J. P, Strauch M. A, Mathiopoulos C., Sonenshein A. L. 1991; Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol Microbiol5:1915–1925
    [Google Scholar]
  64. Slack F. J, Serror P, Joyce E., Sonenshein A. L. 1995; A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol15:689–702
    [Google Scholar]
  65. Smith I. 1993; Regulatory proteins that control late-growth development. In Bacillus subtilis and Other Gram-positive Bacteria pp555–584 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  66. Solomon J. M, Magnuson R, Srivastava A., Grossman A. D. 1995; Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev9:547–558
    [Google Scholar]
  67. Solomon J. M, Lazazzera B. A., Grossman A. D. 1996; Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev10:2014–2024
    [Google Scholar]
  68. Steinmoen H, Knutsen E., Havarstein L. S. 2002; Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A99:7681–7686
    [Google Scholar]
  69. Strauch M. A, Spiegelman G. B, Perego M, Johnson W. C, Burbulys D., Hoch J. A. 1989; The transition state transcription regulator AbrB of Bacillus subtilis is a DNA binding protein. EMBO J8:1615–1621
    [Google Scholar]
  70. Strauch M, Webb V, Spiegelman G., Hoch J. A. 1990; The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A87:1801–1805
    [Google Scholar]
  71. Tortosa P, Albano M., Dubnau D. 2000; Characterization of ylbF , a new gene involved in competence development and sporulation in Bacillus subtilis. Mol Microbiol35:1110–1119
    [Google Scholar]
  72. Turgay K, Hamoen L. W, Venema G., Dubnau D. 1997; Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev11:119–128
    [Google Scholar]
  73. Turgay K, Hahn J, Burghoorn J., Dubnau D. 1998; Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J17:6730–6738
    [Google Scholar]
  74. van Sinderen D., Venema G. 1994; comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol176:5762–5770
    [Google Scholar]
  75. van Sinderen D, Withoff S, Boels H., Venema G. 1990; Isolation and characterization of comL , a transcription unit involved in competence development of Bacillus subtilis. Mol Gen Genet224:396–404
    [Google Scholar]
  76. van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G., Hamoen L. 1995; comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol15:455–462
    [Google Scholar]
  77. Wagner A. 2000; Robustness against mutations in genetic networks of yeast. Nat Genet24:355–361
    [Google Scholar]
  78. Weinrauch Y, Penchev R, Dubnau E, Smith I., Dubnau D. 1990; A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev4:860–872
    [Google Scholar]
  79. Weir J, Predich M, Dubnau E, Nair G., Smith I. 1991; Regulation of spo0H , a gene coding for the Bacillus subtilis sigma H factor. J Bacteriol173:521–529
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26003-0
Loading
/content/journal/micro/10.1099/mic.0.26003-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error