1887

Abstract

Exoenzyme S (ExoS) is an ADP-ribosyltransferase (ADPRT) directly translocated into eukaryotic cells by the type III secretory (TTS) process of . Comparisons of the functional effects of ExoS on human epithelial and murine fibroblastic cells showed that human epithelial cells exhibited an overall increased sensitivity to the effects of bacterially translocated ExoS on cell proliferation, morphology and re-adherence. ExoS was also found to ADP-ribosylate a greater number of low-molecular-mass G (LMMG) proteins in human epithelial cells, as compared to murine fibroblasts. Examination of the cellular mechanism for differences in ExoS ADPRT substrate modification found that the more restricted pattern of substrate modification in murine fibroblasts was not linked to the efficiency of bacterial adherence nor to the efficiency of ExoS internalization by the TTS process. In exploring the cellular nature of patterns of substrate modification, more extensive substrate modification was detected in human and simian cell lines, while rodent cell lines, including rat, mouse and hamster lines, consistently exhibited the more limited pattern of LMMG protein ADP-ribosylation. Patterns of substrate modification were not altered by cellular transformation and occurred independently of cell type. These studies suggest that eukaryotic cell properties, as recognized through studies of cells of different animal origins, affect the substrate targeting of ExoS ADPRT activity, and that this in turn can influence the severity of effects of ExoS on host-cell function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25985-0
2003-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149319.html?itemId=/content/journal/micro/10.1099/mic.0.25985-0&mimeType=html&fmt=ahah

References

  1. Barbieri, A. M., Sha, Q., Bette-Bobillo, P., Stahl, P. D. & Vidal, M. ( 2001; ). ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect Immun 69, 5329–5334.[CrossRef]
    [Google Scholar]
  2. Bette-Bobillo, P., Giro, P., Sainte-Marie, J. & Vidal, M. ( 1998; ). Exoenzyme S from P. aeruginosa ADP-ribosylates rab4 and inhibits transferrin recycling in SLO-permeabilized reticulocytes. Biochem Biophys Res Commun 244, 336–341.[CrossRef]
    [Google Scholar]
  3. Coburn, J. & Frank, D. W. ( 1999; ). Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system. Infect Immun 67, 3151–3154.
    [Google Scholar]
  4. Coburn, J., Wyatt, R. T., Iglewski, B. H. & Gill, D. M. ( 1989; ). Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264, 9004–9008.
    [Google Scholar]
  5. Coburn, J., Kane, A. V., Feig, L. & Gill, D. M. ( 1991; ). Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266, 6438–6446.
    [Google Scholar]
  6. Cowell, B., Chen, D., Frank, D., Vallis, A. & Fleiszig, S. ( 2000; ). ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infect Immun 68, 403–406.[CrossRef]
    [Google Scholar]
  7. Feig, L. A., Urano, T. & Cantor, S. ( 1996; ). Evidence for a Ras/Ral signaling cascade. Trends Biochem Sci 21, 438–441.[CrossRef]
    [Google Scholar]
  8. Feltman, H., Schulert, G., Khan, S., Jain, M., Peterson, L. & Hauser, A. R. ( 2001; ). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147, 2659–2669.
    [Google Scholar]
  9. Ferguson, M. W., Maxwell, J. A., Vincent, T. S., Silva, J. & Olson, J. C. ( 2001; ). Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa. Infect Immun 69, 2198–2210.[CrossRef]
    [Google Scholar]
  10. Fleiszig, S., Wiener-Kronish, J., Miyazaki, H., Vallas, V., Mostov, K., Kanada, D., Sawa, T., Yen, T. & Frank, D. ( 1997a; ). Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65, 579–589.
    [Google Scholar]
  11. Fleiszig, S., Evans, D., Do, N., Vallas, V., Shin, S. & Mostov, K. ( 1997b; ). Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect Immun 65, 2861–2867.
    [Google Scholar]
  12. Fraylick, J. E., LaRocque, J. R., Vincent, T. S. & Olson, J. C. ( 2001; ). The independent and coordinate effects of the ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun 69, 5318–5328.[CrossRef]
    [Google Scholar]
  13. Fraylick, J. E., Rucks, E. A., Greene, D. M., Vincent, T. S. & Olson, J. C. ( 2002a; ). Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity. Biochem Biophys Res Commun 291, 91–100.[CrossRef]
    [Google Scholar]
  14. Fraylick, J. E., Barbieri, J. T., Riese, M. J., Vincent, T. S. & Olson, J. C. ( 2002b; ). ADP-ribosylation and functional effects of Pseudomonas ExoS on cellular Ral. Biochemistry 41, 9680–9687.[CrossRef]
    [Google Scholar]
  15. Frithz-Lindsten, E., Du, Y., Rosqvist, R. & Forsberg, A. ( 1997; ). Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25, 1125–1139.[CrossRef]
    [Google Scholar]
  16. Fu, H., Coburn, J. & Collier, R. J. ( 1993; ). The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci U S A 90, 2320–2324.[CrossRef]
    [Google Scholar]
  17. Ganesan, A. K., Vincent, T. S., Olson, J. C. & Barbieri, J. T. ( 1999; ). Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J Biol Chem 274, 21823–21829.[CrossRef]
    [Google Scholar]
  18. Goehring, U.-M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. ( 1999; ). The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274, 36369–36372.[CrossRef]
    [Google Scholar]
  19. Govoni, S., Bergamaschi, S., Gasparini, L. & 8 other authors ( 1996; ). Fibroblasts of patients affected by Down's syndrome oversecrete amyloid precursor protein and are hyporesponsive to protein kinase C stimulation. Neurology 47, 1069–1075.[CrossRef]
    [Google Scholar]
  20. Henriksson, M. L., Troller, U. & Hallberg, B. ( 2000b; ). 14-3-3 proteins are required for the inhibition of Ras by exoenzyme S. Biochem J 349, 697–701.
    [Google Scholar]
  21. Henriksson, M. L., Rosqvist, R., Telepnev, M., Wolf-Watz, H. & Hallberg, B. ( 2000a; ). Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras. Biochem J 347, 217–222.[CrossRef]
    [Google Scholar]
  22. Horoszewicz, J. S., Leong, S. S., Chu, T. M. & 8 other authors ( 1980; ). The LNCaP cell line a new model for studies in human prostatic carcinoma. In Models for Prostate Cancer, pp. 115–132. Edited by G. P. Murphy. New York: Alan R. Liss.
  23. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  24. Iglewski, B. H., Sadoff, J., Bjorn, M. J. & Maxwell, E. S. ( 1978; ). Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A 75, 3211–3225.[CrossRef]
    [Google Scholar]
  25. Jongewaard, I. N., Lauer, R. M., Behrendt, D. A., Patil, S. & Klewer, S. E. ( 2002; ). Beta 1 integrin activation mediates adhesive differences between trisomy 21 and non-trisomic fibroblasts on type IV collagen. Am J Med Genet 109, 298–305.[CrossRef]
    [Google Scholar]
  26. Knight, D. A., Fink-Barbancon, V., Kulich, S. M. & Barbieri, J. T. ( 1996; ). Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immun 63, 3304–3309.
    [Google Scholar]
  27. Kulich, S. M., Frank, D. W. & Barbieri, J. T. ( 1995; ). Expression of recombinant exoenzyme S of Pseudomonas aeruginosa. Infect Immun 63, 1–8.
    [Google Scholar]
  28. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  29. Masters, S. C., Pederson, K. J., Zhang, L., Barbieri, J. T. & Fu, H. ( 1999; ). Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38, 5216–5221.[CrossRef]
    [Google Scholar]
  30. McGuffie, E. M., Frank, D. W., Vincent, T. S. & Olson, J. C. ( 1998; ). Modification of Ras in eukaryotic cells by Psuedomonas aeruginosa exoenzyme S. Infect Immun 66, 2607–2613.
    [Google Scholar]
  31. McGuffie, E. M., Fraylick, J. E., Hazen-Martin, D. J., Vincent, T. S. & Olson, J. C. ( 1999; ). Differential sensitivity of human epithelial cells to Pseudomonas aeruginosa exoenzyme S. Infect Immun 67, 3494–3503.
    [Google Scholar]
  32. Moskalenko, S., Henry, D. O., Rosse, C., Mirey, G., Camonis, J. H. & White, M. A. ( 2002; ). The exocyst is a Ral effector complex. Nat Cell Biol 4, 66–72.[CrossRef]
    [Google Scholar]
  33. Olson, J. C., McGuffie, E. M. & Frank, D. W. ( 1997; ). Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun 65, 248–256.
    [Google Scholar]
  34. Olson, J. C., Fraylick, J. E., McGuffie, E. M., Dolan, K. M., Yahr, T. L., Frank, D. W. & Vincent, T. S. ( 1999; ). Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 67, 2847–2854.
    [Google Scholar]
  35. Pederson, K. J., Vallis, A. J., Aktories, K., Frank, D. W. & Barbieri, J. T. ( 1999; ). The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular weight GTP-binding proteins. Mol Microbiol 32, 393–401.[CrossRef]
    [Google Scholar]
  36. Pederson, K. J., Pal, S., Vallis, A. J., Frank, D. W. & Barbieri, J. T. ( 2000; ). Intracellular localization and processing of Pseudomonas aeruginosa ExoS in eukaryotic cells. Mol Microbiol 37, 287–299.[CrossRef]
    [Google Scholar]
  37. Riese, M. J. & Barbieri, J. T. ( 2002; ). Membrane localization contributes to the in vivo ADP-ribosylation of Ras by Pseudomonas aeruginosa ExoS. Infect Immun 70, 2230–2232.[CrossRef]
    [Google Scholar]
  38. Rodman, J. S. & Wandinger-Ness, A. ( 2000; ). Rab GTPases coordinate endocytosis. J Cell Sci 113, 183–192.
    [Google Scholar]
  39. Roy-Burman, A., Savel, R. H., Racine, S., Swanson, B. L., Revadigar, N. S., Fujimoto, J., Sawa, T., Frank, D. W. & Wiener-Kronish, J. P. ( 2001; ). Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183, 1767–1774.[CrossRef]
    [Google Scholar]
  40. Sugihara, K., Asano, S., Tanaka, K., Iwamatsu, A., Okawa, K. & Ohta, Y. ( 2002; ). The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4, 73–78.[CrossRef]
    [Google Scholar]
  41. Takai, Y., Sasaki, T. & Matozaki, T. ( 2001; ). Small GTP-binding proteins. Physiol Rev 81, 153–208.
    [Google Scholar]
  42. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  43. Vincent, T. S., Fraylick, J. E., McGuffie, E. M. & Olson, J. C. ( 1999; ). ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol Microbiol 32, 1054–1064.[CrossRef]
    [Google Scholar]
  44. Yahr, T. L., Barbieri, J. T. & Frank, D. W. ( 1996a; ). Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 178, 1412–1419.
    [Google Scholar]
  45. Yahr, T. L., Goranson, J. & Frank, D. W. ( 1996b; ). Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 22, 991–1003.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25985-0
Loading
/content/journal/micro/10.1099/mic.0.25985-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error