Comparison of real-time PCR with SYBR Green I or 5′-nuclease assaysand dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantificationof selected faecal bacteria Free

Abstract

PCR primers and hybridization probes were designed for the 16S rRNA genesof six bacterial species or groups typically present in human faeces or usedin the dairy industry. The primers and probes were applied for quantificationof the target bacterial genomes added in artificial DNA mixtures or faecalDNA preparations, using dot-blot hybridization and real-time PCR with SYBRGreen I and Man chemistries. Dot-blot hybridization with P-labelled oligonucleotide probes was shown to detect a 10 %target DNA fraction present in mixed DNA samples. Applicability of the rDNA-targetedoligonucleotide probes without pre-enrichment of the 16S gene pool by PCRwas thus limited to the detection of the predominant microbial groups. Real-timePCR was performed using a 96-well format and was therefore feasible for straightforwardanalysis of large sample amounts. Both chemistries tested could detect andquantify a subpopulation of 0·01 % from the estimatednumber of total bacterial genomes present in a population sample. The linearrange of amplification varied between three and five orders of magnitude forthe specific target genome while the efficiency of amplification for the individualPCR assays was between 88·3 and 104 %. Use of a thermallyactivated polymerase was required with the SYBR Green I chemistry to obtaina similar sensitivity level to the Man chemistry. In comparisonto dot-blot hybridization, real-time PCR was easier and faster to performand also proved to have a superior sensitivity. The results suggest that real-timePCR has a great potential for analysis of the faecal microflora.

Keyword(s): GI, gastrointestinal
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25975-0
2003-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_27.html?itemId=/content/journal/micro/10.1099/mic.0.25975-0&mimeType=html&fmt=ahah

References

  1. Apajalahti J. H. A, Särkilahti L. K, Mäki B.R. E, Heikkinen J. P, Nurminen P. H., Holben W. E. 1998; Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-basedanalysis of community structure in the gastrointestinal tract of broiler chickens. Appl Environ Microbiol 64:4084–4088
    [Google Scholar]
  2. Bach H.-J, Tomanova J, Schloter M., Munch J. C. 2002; Enumeration of total bacteria and bacteria with genesfor proteolytic activity in pure cultures and in environmental samples byquantitative PCR mediated amplification. J Microbiol Methods 49:235–245
    [Google Scholar]
  3. Doré J, Sghir A, Hannequart-Gramet G, Corthier G., Pochart P. 1998; Design and evaluationof a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitationof human faecal Bacteroides populations. Syst Appl Microbiol 21:65–71
    [Google Scholar]
  4. Favier C. F, Vaughan E. E, De Vos W. M., Akkermans A. D. L. 2002; Molecular monitoring of successionof bacterial communities in human neonates. Appl Environ Microbiol 68:219–226
    [Google Scholar]
  5. Ge Z, White D. A, Whary M. T., Fox J. G. 2001; Fluorogenic PCR-based quantitative detection of amurine pathogen, Helicobacter hepaticus . J Clin Microbiol 39:2598–2602
    [Google Scholar]
  6. Harmsen H. J. M, Gibson G. R, Elfferich P, Raangs G.C, Wildeboer-Veloo A. C. M, Argaiz A, Roberfroid M. B., Welling G. W. 2000; Comparison of viable cell counts andfluorescence in situ hybridization using specific rRNA-based probesfor the quantification of human fecal bacteria. FEMS MicrobiolLett 183:125–129
    [Google Scholar]
  7. Heid C. A, Stevens J, Livak K. J., Williams P. M. 1996; Real time quantitative PCR. GenomeRes 6:986–994
    [Google Scholar]
  8. Heilig H. G. H. J, Zoetendal E. G, Vaughan E. E, Marteau P, Akkermans A. D. L., de Vos W. M. 2002; Molecular diversity of Lactobacillus spp. and other lactic acid bacteriain the human intestine as determined by specific amplification of the 16Sribosomal DNA. Appl Environ Microbiol 68:114–123
    [Google Scholar]
  9. Hein I, Lehner A, Rieck P, Klein K, Brandl E., Wagner M. 2001; Comparison of different approachesto quantify Staphylococcus aureus cells by real-time quantitativePCR and application of this technique for examination of cheese. Appl Environ Microbiol 67:3122–3126
    [Google Scholar]
  10. Hopkins M. J, Sharp R., Macfarlane G. T. 2001; Age and disease related changes in intestinal bacterialpopulations assessed by cell culture, 16S rRNA abundance, and community cellularfatty acid profiles. Gut 48:198–205
    [Google Scholar]
  11. Langendijk P. S, Schut F, Jansen G. J, Raangs G. J., Kamphuis G. R, Wilkinson M. H., Welling G. W. 1995; Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes andits application in fecal samples. Appl Environ Microbiol 61:3069–3075
    [Google Scholar]
  12. Leser T. D, Amenuvor J. Z, Jensen T. K, Lindecrona R.H, Boye M., Møller K. 2002; Culture-independentanalysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690
    [Google Scholar]
  13. Maidak B. L, Cole J. R, Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174
    [Google Scholar]
  14. Malinen E, Mättö J, Salmitie M, Alander M., Saarela M., Palva A. 2002; PCR–ELISA.II: Analysis of Bifidobacterium populations in human faecal samplesfrom a consumption trial with Bifidobacterium lactis Bb-12 and agalacto-oligosaccharide preparation. Syst Appl Microbiol 25:249–258
    [Google Scholar]
  15. Mangin I, Bourget N, Bouhnik Y, Bisetti N, Simonet J.-M., Decaris B. 1994; Identification of Bifidobacterium strains by rRNA gene restriction patterns. Appl Environ Microbiol 60:1451–1458
    [Google Scholar]
  16. Marteau P, Pochart P, Doré J, Béra-Maillet C, Bernalier A., Corthier G. 2001; Comparativestudy of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942
    [Google Scholar]
  17. Matsuki T, Watanabe K, Tanaka R, Fukuda M., Oyaizu H. 1999; Distribution of bifidobacterial speciesin human intestinal microflora examined with 16S rRNA-gene-targeted species-specificprimers. Appl Environ Microbiol 65:4506–4512
    [Google Scholar]
  18. Muttray A. F., Mohn W. W. 2000; Quantitation of the population size and metabolic activity of a resinacid degrading bacterium in activated sludge using slot-blot hybridizationto measure the rRNA : rDNA ratio. Microb Ecol 38:348–357
    [Google Scholar]
  19. Nadkarni M. A, Martin F. E., Jacques N. A. 2002; Determination of bacterial load by real-time PCRusing a broad-range (universal) probe and primers set. Microbiology 148:257–266
    [Google Scholar]
  20. Nogva H. K, Bergh A, Holck A., Rudi K. 2000; Application of the 5′-nuclease PCR assay in evaluationand development of methods for quantitative detection of Campylobacterjejuni . Appl Environ Microbiol 66:4029–4036
    [Google Scholar]
  21. Pearson W., Lipman D. 1988).Improved; tools for biological sequence comparison. Proc Natl AcadSci U S A 85:2444–2448
    [Google Scholar]
  22. Sakata S, Kitahara M, Sakamoto M, Hayashi H, Fukuyama M., Benno Y. 2002; Unification of Bifidobacteriuminfantis and Bifidobacterium longum . Int J Syst EvolMicrobiol Papers in Press
    [Google Scholar]
  23. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.Cold. Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Satokari R. M, Vaughan E. L, Akkermans A. D. L, Saarela M., De Vos W. M. 2001a; Bifidobacterial diversityin human feces detected by genus-specific PCR and denaturing gradient gelelectrophoresis. Appl Environ Microbiol 67:504–513
    [Google Scholar]
  25. Satokari R. M, Vaughan E. E, Akkermans A. D. L, Saarela M., De Vos W. M. 2001b; Polymerase chain reactionand denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231
    [Google Scholar]
  26. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Doré J. 2000; Quantification of bacterialgroups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2366
    [Google Scholar]
  27. Suau A, Bonnet R, Sutren M, Godon J.-J, Gibson G. R., Collins M. D., Doré J. 1999; Directanalysis of genes encoding 16S rRNA from complex communities reveals manynovel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  28. Suzuki M. T., Giavannoni S. J. 1996; Bias caused by template annealing in the amplification of mixtures of16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630
    [Google Scholar]
  29. Suzuki M. T, Taylor L. T., DeLong E. F. 2000; Quantitative analysis of small-subunit rRNA genes in mixedmicrobial populations via 5′-nuclease assays. Appl EnvironMicrobiol 66:4605–4616
    [Google Scholar]
  30. Thompson J. D, Higgins D. G., Gibson T. J. 1994; clustal w: Improving the sensitivity ofprogressive multiple sequence alignment through sequence weighting, position-specificgap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  31. Walter J, Hertel C, Tannock G. W, Lis C. M, Munro K., Hammes W. P. 2001; Detection of Lactobacillus , Pediococcus , Leuconostoc , and Weissella species in human feces by using group-specific PCR primers and denaturinggradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585
    [Google Scholar]
  32. Wang R.-F, Cao W.-W., Cerniglia C. E. 1996; PCR detection and quantitation of predominant anaerobicbacteria in human and animal fecal samples. Appl Environ Microbiol 62:1242–1247
    [Google Scholar]
  33. Zoetendal E. G, Akkermans A. D. L., De Vos W. M. 1998; Temperature gradient gel electrophoresis of 16S rRNAfrom human fecal samples reveals stable and host-specific communities of activebacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25975-0
Loading
/content/journal/micro/10.1099/mic.0.25975-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed