Proteome analysis of extracellular proteins regulated by the and quorum sensing systems in PAO1 Free

Abstract

The and quorum sensing (QS) systems regulate the expression of several genes in response to cell density changes in . Many of these genes encode surface-associated or secreted virulence factors. Proteins from stationary phase culture supernatants were collected from wild-type and PAO1 mutants deficient in one or more of the , and genes and analysed using two-dimensional gel electrophoresis. All mutants released significantly lower amounts of protein than the wild-type. Protein spot patterns from each strain were compared using image analysis and visible spot differences were identified using mass spectrometry. Several previously unknown QS-regulated proteins were characterized, including an aminopeptidase (PA2939), an endoproteinase (PrpL) and a unique ‘hypothetical’ protein (PA0572), which could not be detected in the culture supernatants of Δ mutants, although they were unaffected in Δ mutants. Chitin-binding protein (CbpD) and a hypothetical protein (PA4944) with similarity to host factor I (HF-I) could not be detected when any of the or genes were disrupted. Fourteen proteins were present at significantly greater levels in the culture supernatants of QS mutants, suggesting that QS may also negatively control the expression of some genes. Increased levels of two-partner secretion exoproteins (PA0041 and PA4625) were observed and may be linked to increased stability of their cognate transporters in a QS-defective background. Known QS-regulated extracellular proteins, including elastase (), LasA protease () and alkaline metalloproteinase () were also detected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25967-0
2003-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491311.html?itemId=/content/journal/micro/10.1099/mic.0.25967-0&mimeType=html&fmt=ahah

References

  1. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E. H., Iglewski B. H. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3928–3935
    [Google Scholar]
  2. Atkinson S., Throup J. P., Stewart G. S., Williams P. 1999; A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277
    [Google Scholar]
  3. Beatson S. A., Whitchurch C. B., Sargent J. L., Levesque R. C., Mattick J. S. 2002a; Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa . J Bacteriol 184:3605–3613
    [Google Scholar]
  4. Beatson S. A., Whitchurch C. B., Semmler A. B. T., Young M. D., Mattick J. S. 2002b; Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa . J Bacteriol 184:3598–3604
    [Google Scholar]
  5. Braun P., de Groot A., Bitter W., Tommassen J. 1998; Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa . J Bacteriol 180:3467–3469
    [Google Scholar]
  6. Brint J., Ohman D. 1995; Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J Bacteriol 177:7155–7163
    [Google Scholar]
  7. Cahan R., Axelrad I., Safrin M., Ohman D. E., Kessler E. 2001; A secreted aminopeptidase of Pseudomonas aeruginosa – identification, primary structure and relationship to other aminopeptidases. J Biol Chem 276:43645–43652
    [Google Scholar]
  8. Calfee M. W., Coleman J. P., Pesci E. C. 2001; Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 98:11633–11637
    [Google Scholar]
  9. Callahan S. M., Dunlap P. V. 2000; LuxR- and acyl-homoserine-lactone-controlled non- lux genes define a quorum-sensing regulon in Vibrio fischeri . J Bacteriol 182:2811–2822
    [Google Scholar]
  10. Chapon-Herve V., Akrim M., Latifi A., Williams P., Lazdunski A., Bally M. 1997; Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa . Mol Microbiol 24:1169–1178
    [Google Scholar]
  11. Cordwell S. J. 2002; Acquisition and archiving of information for bacterial proteomics: from sample preparation to database. Methods Enzymol 358:207–227
    [Google Scholar]
  12. Cordwell S. J., Nouwens A. S., Walsh B. J. 2001; Comparative proteomics of bacterial pathogens. Proteomics 1:461–472
    [Google Scholar]
  13. Cordwell S. J., Larsen M. R., Cole R. T., Walsh B. J. 2002; Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148:2765–2781
    [Google Scholar]
  14. Croft L., Beatson S. A., Whitchurch C. B., Huang B., Blakeley R. L., Mattick J. S. 2000; An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology 146:2351–2364
    [Google Scholar]
  15. Cunliffe H. E., Merriman T. R., Lamont I. L. 1995; Cloning and characterization of pvdS , a gene required for pyoverdine synthesis in Pseudomonas aeruginosa : PvdS is probably an alternative sigma factor. J Bacteriol 177:2744–2750
    [Google Scholar]
  16. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298
    [Google Scholar]
  17. Devine J. H., Shadel G. S., Baldwin T. O. 1989; Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC 7744. Proc Natl Acad Sci U S A 86:5688–5692
    [Google Scholar]
  18. Diggle S. P., Winzer K., Lazdunski A., Williams P., Camara M. 2002; Advancing the quorum in Pseudomonas aeruginosa : MvaT and the regulation of N -acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586
    [Google Scholar]
  19. Dong Y.-H., Wan L.-H., Xu J.-L., Zhang H.-B., Zhang X.-F., Zhang L.-H. 2001; Quenching quorum sensing-dependent bacterial infection by an N -acyl homoserine lactonase. Nature 411:813–817
    [Google Scholar]
  20. Erickson D. L., Endersby R., Kirkham A., Stuber K., Vollman D. D., Rabin H. R., Mitchell I., Storey D. G. 2002; Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70:1783–1790
    [Google Scholar]
  21. Folders J., Tommassen J., Van Loon L. C., Bitter W. 2000; Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa . J Bacteriol 182:1257–1263
    [Google Scholar]
  22. Fuqua C., Greenberg E. P. 1998; Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 1:183–189
    [Google Scholar]
  23. Fuqua C., Parsek M. R., Greenberg E. P. 2001; Regulation of gene expression by cell–cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468
    [Google Scholar]
  24. Fuqua W. C., Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275
    [Google Scholar]
  25. Gambello M. J., Kaye S., Iglewski B. H. 1993; LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene ( apr ) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184
    [Google Scholar]
  26. Glessner A., Smith R. S., Iglewski B. H., Robinson J. B. 1999; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181:1623–1629
    [Google Scholar]
  27. Gobom J., Nordhoff E., Mirgorodskaya E., Ekman R., Roepstorff P. 1999; Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116
    [Google Scholar]
  28. Harrington C. A., Rosenow C., Retief J. 2000; Monitoring gene expression using DNA microarrays. Curr Opin Microbiol 3:285–291
    [Google Scholar]
  29. Hassett D. J., Ma J.-F., Elkins J. G. 10 other authors 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093
    [Google Scholar]
  30. Hirose I., Sano K., Shioda I., Kumano M., Nakamura K., Yamane K. 2000; Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional electrophoretic study. Microbiology 146:65–75
    [Google Scholar]
  31. Jacob-Dubuisson F., Locht C., Antoine R. 2001; Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40:306–313
    [Google Scholar]
  32. Köhler T., Curty L. K., Barja F., Van Delden C., Pechère J.-C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signalling and requires flagella and pili. J Bacteriol 182:5990–5996
    [Google Scholar]
  33. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343
    [Google Scholar]
  34. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146
    [Google Scholar]
  35. Leoni L., Orsi N., de Lorenzo V., Visca P. 2000; Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa . J Bacteriol 182:1481–1491
    [Google Scholar]
  36. Lyczak J. B., Cannon C. L., Pier G. B. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060
    [Google Scholar]
  37. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 182:2702–2708
    [Google Scholar]
  38. Nakao H., Watanabe H., Nakayama S., Takeda T. 1995; yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene ( hfq ). Mol Microbiol 18:859–865
    [Google Scholar]
  39. Nouwens A. S., Cordwell S. J., Larsen M. R., Molloy M. P., Gillings M., Willcox M. D. P., Walsh B. J. 2000; Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa . Electrophoresis 21:3797–3809
    [Google Scholar]
  40. Nouwens A. S., Willcox M. D. P., Walsh B. J., Cordwell S. J. 2002; Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa . Proteomics 2:1325–1346
    [Google Scholar]
  41. Ochsner U. A., Reiser J. 1995; Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 92:6424–6428
    [Google Scholar]
  42. Ochsner U. A., Koch A. K., Fietcher A., Reiser J. 1994; Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . J Bacteriol 176:2044–2054
    [Google Scholar]
  43. Ochsner U. A., Johnson Z., Lamont I. L., Cunliffe H. E., Vasil M. L. 1996; Exotoxin A production in Pseudomonas aeruginosa requires the iron-regulated pvdS gene encoding an alternative sigma factor. Mol Microbiol 21:1019–1028
    [Google Scholar]
  44. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130
    [Google Scholar]
  45. Pearson J. P., Pesci E. C., Iglewski B. H. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767
    [Google Scholar]
  46. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3127–3132
    [Google Scholar]
  47. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N -butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319
    [Google Scholar]
  48. Reimmann C., Ginet N., Michel L. 9 other authors 2002; Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932
    [Google Scholar]
  49. Robertson G. T., Loop R. M. Jr 1999; The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34:690–700
    [Google Scholar]
  50. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154
    [Google Scholar]
  51. Seed P., Passador L., Iglewski B. 1995; Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659
    [Google Scholar]
  52. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  53. Tang H. B., DiMango E., Bryan R., Gambello M., Iglewski B. H., Goldberg J. B., Prince A. 1996; Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64:37–43
    [Google Scholar]
  54. Toder D. S., Gambello M. J., Iglewski B. H. 1991; Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR . Mol Microbiol 5:2003–2010
    [Google Scholar]
  55. Van Delden C., Iglewski B. H. 1998; Cell-to-cell signalling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560
    [Google Scholar]
  56. Whitehead N. A., Barnard A. M. L., Slater H., Simpson N. J. L., Salmond G. P. C. 2001; Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 23:365–404
    [Google Scholar]
  57. Whiteley M., Greenberg E. P. 2001; Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183:5529–5534
    [Google Scholar]
  58. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:13904–13909
    [Google Scholar]
  59. Whiteley M., Parsek M. R., Greenberg E. P. 2000; Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa . J Bacteriol 182:4356–4360
    [Google Scholar]
  60. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864
    [Google Scholar]
  61. Wilderman P. J., Vasil A. I., Johnson Z., Wilson M. J., Cunliffe H. E., Lamont I. L., Vasil M. L. 2001; Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa . Infect Immun 69:5385–5394
    [Google Scholar]
  62. Wilson M. J., McMorran B. J., Lamont I. L. 2001; Analysis of promoters recognized by PvdS, an extracytoplasmic-function sigma factor protein from Pseudomonas aeruginosa . J Bacteriol 183:2151–2155
    [Google Scholar]
  63. Winzer K., Falconer C., Garber N. C., Diggle S. P., Camara M., Williams P. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411
    [Google Scholar]
  64. Wu H., Song Z., Givskov M., Doring G., Worlitzsch D., Mathee K., Rygaard J., Hoiby N. 2001; Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147:1105–1113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25967-0
Loading
/content/journal/micro/10.1099/mic.0.25967-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed