1887

Abstract

The naturally mummified remains of a mother and two daughters found in an 18th century Hungarian crypt were analysed, using multiple molecular genetic techniques to examine the epidemiology and evolution of tuberculosis. DNA was amplified from a number of targets on the genome, including DNA from IS, , codon 463, , , , and the direct repeat (DR) region. The strains present in the mummified remains were identified as and not , from and genotyping, PCR from the and loci, and spoligotyping. Spoligotyping divided the samples into two strain types, and screening for a deletion in the MT1801– region initially divided the strains into three types. Further investigation showed, however, that an apparent deletion was due to poor DNA preservation. By comparing the effect of PCR target size on the yield of amplicon, a clear difference was shown between 18th century and modern DNA. A two-centre system was used to confirm the findings of this study, which clearly demonstrate the value of using molecular genetic techniques to study historical cases of tuberculosis and the care required in drawing conclusions. The genotyping and spoligotyping results are consistent with the most recent theory of the evolution and spread of the modern tuberculosis epidemic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25961-0
2003-01-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_15.html?itemId=/content/journal/micro/10.1099/mic.0.25961-0&mimeType=html&fmt=ahah

References

  1. Baron H, Hummel S., Herrmann B. 1996; Mycobacterium tuberculosis complex DNA in ancient human bones. J Archaeol Sci23:667–671
    [Google Scholar]
  2. Boom R, Sol C. J, Salimans M. M, Jansen C. L, Wertheim-van Dillen P. M., van der Noordaa J. 1990; Rapid and simple method for purification of nucleic acids. J Clin Microbiol28:495–503
    [Google Scholar]
  3. Braun M, Cook D. C., Pfeiffer S. 1998; DNA from Mycobacterium tuberculosis complex identified in North American, pre-Colombian human skeletal remains. J Archaeol Sci25:271–277
    [Google Scholar]
  4. Brosch R, Gordon S. V, Marmiesse M.. 12 other authors 2002; A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A99:3684–3689
    [Google Scholar]
  5. Cole S. T, Brosch R, Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  6. Crubézy , Ludes B, Poveda J.-D, Clayton J, Crouau-Roy B., Montagnon D. 1998; Identification of Mycobacterium DNA in an Egyptian Pott's case of 5,400 years old. C R Acad Sci III 321:941–951
    [Google Scholar]
  7. Dale J. W, Brittain D, Cataldi A. A.. 11 other authors 2001; Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardised nomenclature. Int J Tuberc Lung Dis5:216–219
    [Google Scholar]
  8. Dankner W. M, Waecker N. J, Essey M. A, Moser K, Thompson M., Davis C. E. 1993; Mycobacterium bovis infections in San Diego: a clinicoepidemiologic study of 73 patients and a historical review of a forgotten pathogen. Medicine (Baltim)72:11–37
    [Google Scholar]
  9. Del Portillo P, Murillo L. A., Patarroyo M. E. 1991; Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol29:2163–2168
    [Google Scholar]
  10. Del Portillo P, Thomas M. C, Martinez E, Maranon C, Valladares B, Patarroyo M. E., Carlos Lopez M. 1996; Multiprimer PCR system for differential identification of mycobacteria in clinical samples. J Clin Microbiol34:324–328
    [Google Scholar]
  11. Donoghue H. D, Spigelman M, Zias J, Gernaey-Child A. M., Minnikin D. E. 1998; Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Lett Appl Microbiol27:265–269
    [Google Scholar]
  12. Dubos R., Dubos J. 1952; The White Plague, Tuberculosis, Man and Society Boston: Little Brown;
    [Google Scholar]
  13. Eisenach K. D, Cave M. D, Bates J. H., Crawford J. T. 1990; Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis161:977–981
    [Google Scholar]
  14. Faerman M, Jankauskas R, Gorski A, Bercovier H., Greenblatt C. L. 1997; Prevalence of human tuberculosis in a medieval population of Lithuania studied by ancient DNA analysis. Ancient Biomolecules1:205–214
    [Google Scholar]
  15. Filliol I, Sola C., Rastogi N. 2000; Detection of a previously unamplified spacer within the DR locus of Mycobacterium tuberculosis : epidemiological implications. J Clin Microbiol38:1231–1234
    [Google Scholar]
  16. Fletcher H. A, Donoghue H. D, Holton J, Pap I., Spigelman M. 2003; Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th century Hungarians. Am J Phys Anthropol in press
    [Google Scholar]
  17. Frothingham R, Strickland P. L, Bretzel G, Ramaswamy S, Musser J. M., Williams D. L. 1999; Phenotypic and genotypic characterization of Mycobacterium africanum isolates from West Africa. J Clin Microbiol37:1921–1926
    [Google Scholar]
  18. Glynn J. R, Whiteley J, Bifani P. J, Kremer K., van Soolingen D. 2002; Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis : a systematic review. Emerg Infect Dis8:843–849
    [Google Scholar]
  19. Gordon S. V, Brosch R, Billaut A, Garnier T, Eiglemeier K., Cole S. T. 1999; Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol32:643–655
    [Google Scholar]
  20. Grange J. M. 2001; Mycobacterium bovis infection in human beings. Tuberculosis81:71–77
    [Google Scholar]
  21. Haas C. J, Zink A, Molnar E.. 7 other authors 2000; Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary. Am J Phys Anthropol113:293–304
    [Google Scholar]
  22. Ho T. B, Robertson B. D, Taylor G. M, Shaw R. J., Young D. B. 2000; Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast4:272–282
    [Google Scholar]
  23. Hoss M, Jaruga P, Zastawny T. H, Dizdaroglu M., Pääbo S. 1996; DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res24:1304–1307
    [Google Scholar]
  24. Kamerbeek J, Schouls L, Kolk A.. 8 other authors 1997; Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol35:907–914
    [Google Scholar]
  25. Kato-Maeda M, Rhee J. T, Gingeras T. R, Salamon H, Drenkow J, Smittipat N., Small P. M. 2001; Comparing genomes within the species Mycobacterium tuberculosis. Genome Res4:547–554
    [Google Scholar]
  26. Kurepina N. E, Sreevatsan S, Plikaytis B. B, Bifani P. J, Connell N. D, Donnelly R. J, van Soolingen D, Musser J. M., Kreiswirth B. N. 1998; Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS 6110 elements in Mycobacterium tuberculosis : non-random integration in the dnaA–dnaN region. Tuber Lung Dis79:31–42
    [Google Scholar]
  27. Lassen C, Hummel S., Herrmann B. 1994; Comparison of DNA extraction and amplification from ancient human bone and mummified soft tissue. Int J Leg Med107:152–155
    [Google Scholar]
  28. Legrand E, Filliol I, Sola C., Rastogi N. 2001; Use of spoligotyping to study the evolution of the direct repeat locus by IS 6110 transposition in Mycobacterium tuberculosis. J Clin Microbiol39:1595–1599
    [Google Scholar]
  29. Mays S, Taylor G. M, Legge A. J, Young D. B., Turner-Walker G. 2001; Paleopathological and biomolecular study of tuberculosis in a medieval skeletal collection from England. Am J Phys Anthropol114:298–311
    [Google Scholar]
  30. Mustafa A. S, Ahmed A, Abal A. T., Chugh T. D. 1995; Establishment and evaluation of a multiplex polymerase chain reaction for detection of mycobacteria and specific identification of Mycobacterium tuberculosis complex. Tuber Lung Dis76:336–343
    [Google Scholar]
  31. Nerlich A. G, Haas C. J, Zink A, Szeimies U., Hagedorn H. G. 1997; Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet350:1404
    [Google Scholar]
  32. O'Rourke D. H, Hayes M. G., Carlyle S. W. 2000; Ancient DNA studies in physical anthropology. Annu Rev Anthropol29:60–66
    [Google Scholar]
  33. Pap I, Józsa L, Repa I, Bajzik G, Lakhani S. R, Donoghue H. D., Spigelman M. 1999; 18–19th century tuberculosis in naturally mummified individuals (Vác, Hungary). In Tuberculosis: Past and Present pp421–428 Edited by Pálfi G., Dutour O., Deák J., Hutás I.. TB Foundation Budapest: Golden Book;
    [Google Scholar]
  34. Salo W. L, Aufderheide A. C, Buikstra J., Holcomb T. A. 1994; Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A6:2091–2094
    [Google Scholar]
  35. Soini H, Pan X, Amin A, Graviss E. A, Siddiqui A., Musser J. M. 2000; Characterization of Mycobacterium tuberculosis isolates from patients in Houston, Texas, by spoligotyping. J Clin Microbiol38:669–676
    [Google Scholar]
  36. Sola C, Devallois A, Horgen L, Maisetti J, Filliol I, Legrand E., Rastogi N. 1999; Tuberculosis in the Caribbean: using spacer oligonucleotide typing to understand strain origin and transmission. Emerg Infect Dis5:404–414
    [Google Scholar]
  37. Spigelman M., Lemma E. 1993; The use of the polymerase chain reaction to detect Mycobacterium tuberculosis in ancient skeletons. Int J Osteoarchaeol3:137–143
    [Google Scholar]
  38. Sreevatsan S, Escalante P, Pan X.. 11 other authors 1996; Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol34:2007–2010
    [Google Scholar]
  39. Sreevatsan S, Pan X, Stockbauer K. E, Connell N. D, Kreiswirth B. N, Whittam T. S., Musser J. M. 1997; Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates recent global dissemination. Proc Natl Acad Sci U S A94:9869–9874
    [Google Scholar]
  40. Stead W. W, Eisenach K. D, Cave M. D, Beggs M. L, Templeton G. L, Thoen C. O., Bates J. H. 1995; When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am J Respir Crit Care Med151:1267–1268
    [Google Scholar]
  41. Taylor G. M, Crossey M, Salanha J. A., Waldron T. 1996; Detection of Mycobacterium tuberculosis bacterial DNA in medieval human skeletal remains using polymerase chain reaction. J Archaeol Sci23:789–798
    [Google Scholar]
  42. Taylor G. M, Goyal M, Legge A. J, Shaw R. J., Young D. 1999; Genotypic analysis of Mycobacterium tuberculosis from medieval human remains. Microbiology145:899–904
    [Google Scholar]
  43. Taylor G. M, Mays S, Legge A. J, Ho T. B. L., Young D. 2001; Genetic analysis of tuberculosis in human remains. Ancient Biomolecules3:267–280
    [Google Scholar]
  44. Thierry D, Brisson-Noel A, Vincent-Levy-Frebault V, Nguyen S, Guesdon J. L., Gicquel B. 1990; Characterization of a Mycobacterium tuberculosis insertion sequence, IS 6110 , and its application in diagnosis. J Clin Microbiol28:2668–2673
    [Google Scholar]
  45. van der Zanden A. G, Hoentjen A. H, Heilmann F. G, Weltevreden E. F, Schouls L. M., van Embden J. D. 1998; Simultaneous detection and strain differentiation of Mycobacterium tuberculosis complex in paraffin wax embedded tissues and in stained microscopic preparations. Mol Pathol51:209–214
    [Google Scholar]
  46. Zink A, Haas C. J, Reischl U, Szeimies U., Nerlich A. G. 2001; Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol50:355–366
    [Google Scholar]
  47. Zumárraga M, Bigi F, Alito A, Romano M. I., Cataldi A. 1999; A 12·7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology145:893–897
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25961-0
Loading
/content/journal/micro/10.1099/mic.0.25961-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error