1887

Abstract

produces a great number of extracellular cellulases which are free or cellulosome-bound. The nucleotide sequence of a gene cluster containing the genes , and was determined from strain F7. Gene products Cel9I and Cel9N are structurally related enzymes having a glycosyl hydrolase family 9 and a carbohydrate-binding module (CBM3c), but show characteristic differences: Cel9I is a non-cellulosomal protein with an additional CBM (CBM3b), whereas Cel9N contains a cellulosomal dockerin module and no additional CBM. Although Cel9I is a processive endoglucanase, Cel9N is non-processive. Both enzymes hydrolyse phosphoric acid swollen cellulose, but the products of hydrolysis are different. The CseP protein encoded in the gene cluster is the first component attached to the cellulosomal scaffoldin for which no catalytic activity could be detected. It was shown to be present in the cellulosome. Its sequence is homologous to the spore-coat assembly protein CotH of , suggesting a structural role of CseP in the cellulosome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25959-0
2003-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149515.html?itemId=/content/journal/micro/10.1099/mic.0.25959-0&mimeType=html&fmt=ahah

References

  1. Baker, A. A., Helbert, W., Sugiyama, J. & Miles, M. J. ( 2000; ). New insight into cellulose structure by atomic force microscopy shows the Iα crystal phase at near-atomic resolution. Biophys J 79, 1139–1145.[CrossRef]
    [Google Scholar]
  2. Barr, B., Hsieh, Y. L., Ganem, B. & Wilson, D. B. ( 1996; ). Identification of two functionally different classes of exocellulases. Biochem 35, 586–592.[CrossRef]
    [Google Scholar]
  3. Bayer, E. A., Morag, E., Lamed, R., Yaron, S. & Shoham, Y. ( 1998; ). Cellulosome structure: four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics. In Carbohydrases from Trichoderma reesei and Other Microorganisms, pp. 39–65. Edited by M. Claeyssens, W. Nerinckx & K. Piens. London: Royal Society of Chemistry.
  4. Bayer, E. A., Shoham, Y. & Lamed, R. ( 2000; ). Cellulose-decomposing prokaryotes and their enzyme systems. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn (latest update release 3, 7 September 2001). Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  5. Béguin, P., Chauvaux, S., Chaveroche, M.-K., Guglielmi, G., Kataeva, I., Leibovitz, E. & Miras, I. ( 1998; ). The cellulosome: a versatile system for coupling cellulolytic enzymes and attaching them to the cell surface. In Carbohydrases from Trichoderma reesei and Other Microorganisms, pp. 66–72. Edited by M. Claeyssens, W. Nerinckx & K. Piens. London: Royal Society of Chemistry.
  6. Boisset, C., Armand, S., Drouillard, S., Chanzy, H., Driguez, H. & Henrissat, B. ( 1998; ). Structure–function relationships in cellulases: the enzymatic degradation of insoluble cellulose. In Carbohydrases from Trichoderma reesei and Other Microorganisms, pp. 124–132. Edited by M. Claeyssens, W. Nerinckx & K. Piens. London: Royal Society of Chemistry.
  7. Bolam, D. N., Ciruela, A., McQueen-Mason, S., Simpson, P., Williamson, M. P., Rixon, J. E., Boraston, A., Hazlewood, G. P. & Gilbert, H. J. ( 1998; ). Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331, 775–781.
    [Google Scholar]
  8. Bumazkin, B. K., Velikodvorskaya, G. A., Tuka, K., Mogutov, M. A. & Strongin, A. Y. ( 1990; ). Cloning of Clostridium thermocellum endoglucanase genes in Escherichia coli. Biochem Biophys Res Commun 167, 1057–1064.[CrossRef]
    [Google Scholar]
  9. Carrard, G., Koivula, A., Söderlund, H. & Béguin, P. ( 2000; ). Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 97, 10342–10347.[CrossRef]
    [Google Scholar]
  10. Galagan, J. E., Nusbaum, C., Roy, A. & 72 other authors ( 2002; ). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12, 532–542.[CrossRef]
    [Google Scholar]
  11. Hazlewood, G. P., Davidson, K., Laurie, J. I., Huskisson, N. S. & Gilbert, H. J. ( 1993; ). Gene sequence and properties of CelI, a family E endoglucanase from Clostridium thermocellum. J Gen Microbiol 139, 307–316.[CrossRef]
    [Google Scholar]
  12. Henrissat, B., Teeri, T. T. & Warren, R. A. J. ( 1998; ). A scheme for designating enzymes that hydrolyse the polysaccharides in the cell wall of plants. FEBS Lett 425, 352–354.[CrossRef]
    [Google Scholar]
  13. Irwin, D., Walker, L., Spezio, M. & Wilson, D. ( 1993; ). Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42, 1002–1013.[CrossRef]
    [Google Scholar]
  14. Irwin, D., Shin, D. H., Zhang, S., Barr, B. K., Sakon, J., Karplus, P. A. & Wilson, D. B. ( 1998; ). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180, 1709–1714.
    [Google Scholar]
  15. Ishikawa, S., Kawahara, S. & Sekiguchi, J. ( 1999; ). Cloning and expression of two autolysin genes, cwlU and cwlV, which are tandemly arranged on the chromosome of Bacillus polymyxa var. colistinus. Mol Gen Genet 262, 738–748.[CrossRef]
    [Google Scholar]
  16. Johnson, E. A., Madia, A. & Demain, A. L. ( 1981; ). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 41, 1060–1062.
    [Google Scholar]
  17. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.
    [Google Scholar]
  18. Lamed, R., Setter, E., Kenig, R. & Bayer, E. A. ( 1983; ). The cellulosome – a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng 13, 163–181.
    [Google Scholar]
  19. Mechaly, A., Yaron, S., Lamed, R., Fierobe, H.-P., Belaich, A., Belaich, J.-P., Shoham, Y. & Bayer, E. A. ( 2000; ). Cohesin–dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39, 170–177.[CrossRef]
    [Google Scholar]
  20. Meissner, K., Wassenberg, D. & Liebl, W. ( 2000; ). The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage beta-1, 3/beta-1,4-glucan. Mol Microbiol 36, 898–912.[CrossRef]
    [Google Scholar]
  21. Morag, E., Bayer, E. A. & Lamed, R. ( 1992; ). Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzyme Microb Technol 14, 289–292.[CrossRef]
    [Google Scholar]
  22. Nolling, J., Breton, G., Omelchenko, M. V. & 16 other authors ( 2001; ). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183, 4823–4838.[CrossRef]
    [Google Scholar]
  23. Nutt, A., Sild, V., Pettersson, G. & Johansson, G. ( 1998; ). Progress curves. A mean for functional classification of cellulases. Eur J Biochem 258, 200–206.[CrossRef]
    [Google Scholar]
  24. Pagès, S., Gal, L., Bélaich, A., Gaudin, C., Tardif, C. & Bélaich, J-P. ( 1997; ). Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J Bacteriol 179, 2810–2816.
    [Google Scholar]
  25. Parsiegla, G., Reverbel-Leroy, C., Tardif, C., Bélaich, J. P., Driguez, H. & Haser, R. ( 2000; ). Crystal structures of the cellulase Cel48F in complex with inhibitors and substrates give insights into its processive action. Biochem 39, 11238–11246.[CrossRef]
    [Google Scholar]
  26. Reverbel-Leroy, C., Pages, S., Bélaich, A., Bélaich, J.-P. & Tardif, C. ( 1997; ). The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179, 46–52.
    [Google Scholar]
  27. Riedel, K., Ritter, J., Bauer, S. & Bronnenmeier, K. ( 1998; ). The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiol Lett 164, 261–267.[CrossRef]
    [Google Scholar]
  28. Salamitou, S., Lemaire, M., Fujino, T., Ohayon, H., Gounon, P., Béguin, P. & Aubert, J.-P. ( 1994; ). Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a reporter for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol 176, 2828–2834.
    [Google Scholar]
  29. Schwarz, W. H. ( 2001; ). The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56, 634–649.[CrossRef]
    [Google Scholar]
  30. Sedmak, J. J. & Grossberg, S. E. ( 1977; ). A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal Biochem 79, 544–552.[CrossRef]
    [Google Scholar]
  31. Teeri, T. T. ( 1997; ). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15, 160–167.[CrossRef]
    [Google Scholar]
  32. Tomme, P., Boraston, A., McLean, B. & 7 other authors ( 1998; ). Characterization and affinity applications of cellulose-binding domains. J Chromatogr 715, 283–296.[CrossRef]
    [Google Scholar]
  33. Tormo, J., Lamed, R., Chirino, A. J., Morag, E., Bayer, E. A., Shoham, Y. & Steitz, T. A. ( 1996; ). Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15, 5739–5751.
    [Google Scholar]
  34. Wood, T. M. ( 1988; ). Preparation of crystalline, amorphous and dyed cellulase substrates. Methods Enzymol 160, 19–25.
    [Google Scholar]
  35. Wood, T. M. & Bhat, K. M. ( 1988; ). Methods for measuring cellulase activities. Methods Enzymol 160, 87–112.
    [Google Scholar]
  36. Zilhao, R., Naclerio, G., Heriques, A. O., Baccigalupi, L., Moran, C. P., Jr & Ricca, E. ( 1999; ). Assembly requirements and role of CotH during spore coat formation in Bacillus subtilis. J Bacteriol 181, 2631–2633.
    [Google Scholar]
  37. Zverlov, V. V., Piotukh, K., Dakhova, O., Velikodvorskaya, G. & Borriss, R. ( 1996; ). The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 45, 245–247.[CrossRef]
    [Google Scholar]
  38. Zverlov, V. V., Velikodvorskaya, G. A., Schwarz, W. H., Kellermann, J. & Staudenbauer, W. L. ( 1999; ). Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5. Appl Microbiol Biotechnol 51, 852–859.[CrossRef]
    [Google Scholar]
  39. Zverlov, V. V., Fuchs, K. P. & Schwarz, W. H. ( 2002; ). Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol 68, 3176–3179.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25959-0
Loading
/content/journal/micro/10.1099/mic.0.25959-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error