1887

Abstract

Even though enterococci are a common cause of human infection they can readily be isolated from a range of food sources, including various meat and dairy products. An enterococcal strain, DPC5280, which exhibits a broad spectrum of inhibition against many Gram-positive bacteria was recently isolated from an Irish raw milk sample. Characterization of the inhibition revealed that the strain exhibits haemolytic activity characteristic of the two-component lantibiotic cytolysin and also produces a heat-labile antimicrobial protein of 34 kDa. The latter protein displayed cell wall hydrolytic activity, as evidenced by zymogram gels containing autoclaved lactococcal cells. N-terminal sequencing of the purified protein yielded the sequence ASNEWS which is 100 % identical to enterolysin A (accession no. AF249740), a protein which shares 28 and 29 % identity to the Gly-Gly endopeptidases, lysostaphin and zoocin A, respectively. Indeed, amplification of from DPC5280 and sequencing revealed that the protein is 100 % identical to enterolysin A. The DPC5280 strain also contained the determinants associated with multiple virulence factors, including gelatinase, aggregation substance and multiple antibiotic resistance. The linkage of this cell-wall-degrading enzyme to other virulence factors in enterococci may contribute to the competitiveness of pathogenic enterococci when found in complex microbial environments such as food and the gastrointestinal tract.

Keyword(s): AU, arbitrary units
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25949-0
2003-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149655.html?itemId=/content/journal/micro/10.1099/mic.0.25949-0&mimeType=html&fmt=ahah

References

  1. Aguirre, M. & Collins, M. D. ( 1993; ). Lactic acid bacteria and human clinical infection. J Appl Bacteriol 75, 95–107.[CrossRef]
    [Google Scholar]
  2. Anderson, D. G. & McKay, L. L. ( 1983; ). Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46, 549–552.
    [Google Scholar]
  3. Baba, T. & Schneewind, O. ( 1996; ). Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J 15, 4789–4797.
    [Google Scholar]
  4. Beresford, T. & Condon, S. ( 1991; ). Cloning and partial characterization of genes for ribosomal ribonucleic acid in Lactococcus lactis subsp. lactis. FEMS Microbiol Lett 62, 319–323.
    [Google Scholar]
  5. Chow, J. W., Thal, L. A., Perri, M. B., Vazquez, J. A., Donabedian, S. M., Clewell, D. B. & Zervos, M. J. ( 1993; ). Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocartitis. Antimicrob Agents Chemother 37, 2474–2477.[CrossRef]
    [Google Scholar]
  6. Clewell, D. B. ( 1990; ). Movable genetic elements and antibiotic resistance in enterococci. Eur J Clin Microbiol Infect Dis 9, 90–102.[CrossRef]
    [Google Scholar]
  7. Clewell, D. B. ( 1993; ). Bacterial sex pheromone-induced plasmid transfer. Cell 73, 9–12.[CrossRef]
    [Google Scholar]
  8. Clewell, D. B., Tomich, P. K., Gawron-Burke, M. C., Franke, A. E., Yagi, Y. & An, F. Y. ( 1982; ). Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J Bacteriol 152, 1220–1230.
    [Google Scholar]
  9. Clewell, D. B., Flannagan, S. E. & Jaworski, D. D. ( 1995; ). Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 3, 229–236.[CrossRef]
    [Google Scholar]
  10. Cooper, V. J. C. & Salmond, G. P. C. ( 1993; ). Molecular analysis of the major cellulase (CelV) of Erwinia carotovora: evidence for an evolutionary ‘mix and match’ of enzyme domains. Mol Gen Genet 241, 342–350.
    [Google Scholar]
  11. Coque, T. M., Patterson, J. E., Steckelberg, J. M. & Murray, B. E. ( 1995; ). Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from the feces of hospitalized and community-based persons. J Infect Dis 171, 1223–1229.[CrossRef]
    [Google Scholar]
  12. Eaton, T. J. & Gasson, M. J. ( 2001; ). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67, 1628–1635.[CrossRef]
    [Google Scholar]
  13. Facklam, R. R. & Sahm, D. F. ( 1995; ). Enterococcus. In Manual of Clinical Microbiology, pp. 308–314. Edited by P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover & R. H. Yolken. Washington, DC: American Society for Microbiology.
  14. Garcia, E., Garcia, J. L., Garcia, P., Arraras, A., Sanchez-Puelles, J. M. & Lopez, R. ( 1988; ). Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci U S A 85, 914–918.[CrossRef]
    [Google Scholar]
  15. Garcia, P., Bascaran, V., Rodriguez, A. & Suarez, J. E. ( 1997; ). Isolation and characterization of promoters from the Lactobacillus casei temperate bacteriophage A2. Can J Microbiol 43, 1063–1068.[CrossRef]
    [Google Scholar]
  16. Hayashida, M., Watanabe, K., Muramatsu, T. & Goto, M. A. ( 1987; ). Further characterization of PL-1 phage-associated N-acetyl-muramidase of Lactobacillus casei. J Gen Microbiol 133, 1343–1349.
    [Google Scholar]
  17. Hodges, T. L., Zighelboim-Daum, S., Eliopoulos, G. M., Wennersten, C. & Moellering, R. C., Jr ( 1992; ). Antimicrobial susceptibility changes in Enterococcus faecalis following various penicillin exposure regimens. Antimicrob Agents Chemother 36, 121–125.[CrossRef]
    [Google Scholar]
  18. Hoffman, C. S. & Winston, F. ( 1987; ). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.[CrossRef]
    [Google Scholar]
  19. Ike, Y., Craig, R. A., White, B. A., Yagi, Y. & Clewell, D. B. ( 1983; ). Modification of Streptococcus faecalis sex pheromones after acquistion of plasmid DNA. Proc Natl Acad Sci U S A 92, 12055–12059.
    [Google Scholar]
  20. Ike, Y., Hashimoto, H. & Clewell, D. B. ( 1984; ). Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45, 528–530.
    [Google Scholar]
  21. Jett, B. D., Jensen, H. G., Nordquist, R. E. & Gilmore, M. S. ( 1992; ). Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun 60, 2445–2452.
    [Google Scholar]
  22. Jett, B. D., Huyke, M. M. & Gilmore, M. S. ( 1994; ). Virulence of enterococci. Clin Microbiol Rev 7, 462–478.
    [Google Scholar]
  23. Jones, R. N., Marshall, S. A., Pfaller, M. A., Wilke, W. W., Hollis, R. J., Erwin, M. E., Edmond, M. B. & Wenzel, R. P. ( 1997; ). Nosocomial enterococcal blood stream infections in the SCOPE program: antimicrobial resistance, species occurrence, molecular testing results, and laboratory testing accuracy. SCOPE Hospital Study Group. Diagn Microbiol Infect Dis 29, 95–102.[CrossRef]
    [Google Scholar]
  24. Joyanes, P., Pascual, A., Martinez-Martinez, L., Hevia, A. & Perea, E. J. ( 2000; ). In vitro adherence of Enterococcus faecalis and Enterococcus faecium to urinary catheters. Eur J Clin Microbiol Infect Dis 19, 124–127.[CrossRef]
    [Google Scholar]
  25. Kashige, N., Nakashima, Y., Miake, F. & Watanabe, K. ( 2000; ). Cloning, sequence analysis, and expression of Lactobacillus casei phage PL-1 lysis genes. Arch Virol 145, 1521–1534.[CrossRef]
    [Google Scholar]
  26. Kelly, G., Prasannan, S., Daniell, S., Fleming, K., Frankel, G., Dougan, G., Connerton, L. & Matthews, S. ( 1999; ). Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6, 313–318.[CrossRef]
    [Google Scholar]
  27. Klein, G., Pack, A. & Reuter, G. ( 1998; ). Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl Envir Microbiol 64, 1825–1830.
    [Google Scholar]
  28. Knudtson, L. M. & Hartman, P. A. ( 1993; ). Antibiotic resistance among enterococcal isolates from environmental and clinical sources. J Food Prot 56, 486–492.
    [Google Scholar]
  29. Kuhnen, E., Richter, F., Richter, K. & Andries, L. ( 1988; ). Establishment of a typing system for group D streptococci. Zentbl Bakteriol Hygiene A 267, 322–330.
    [Google Scholar]
  30. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  31. Leclerc, D. & Asselin, A. ( 1989; ). Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can J Microbiol 35, 749–753.[CrossRef]
    [Google Scholar]
  32. Lopez, R., Garcia, J. L., Garcia, E., Ronda, C. & Garcia, P. ( 1992; ). Structural analysis and biological significance of the cell wall lytic enzymes of Streptococcus pneumoniae and its bacteriophage. FEMS Microbiol Lett 79, 439–447.
    [Google Scholar]
  33. Low, D. E., Willey, B. M., Betschel, S. & Kreiswirth, B. ( 1994; ). Enterococcus: pathogens of the 90s. Eur J Surg Suppl 573, 19–24.
    [Google Scholar]
  34. Lowe, A. M., Lambert, P. A. & Smith, A. W. ( 1995; ). Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun 63, 703–706.
    [Google Scholar]
  35. Makinen, P. L., Clewell, D. B., An, F. & Makinen, K. K. ( 1989; ). Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (‘gelatinase’) from Streptococcus faecalis (strain OG1-10). J Biol Chem 264, 3325–3334.
    [Google Scholar]
  36. Marino, M., Braun, L., Cossart, P. & Ghosh, P. ( 1999; ). Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol Cell 4, 1063–1072.[CrossRef]
    [Google Scholar]
  37. McKay, L. L. & Baldwin, K. A. ( 1984; ). Conjugative 40-megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl Envir Microbiol 47, 68–74.
    [Google Scholar]
  38. Moellering, R. C., Jr ( 1992; ). Emergence of Enterococcus as a significant pathogen. Clin Infect Dis 14, 1173–1176.[CrossRef]
    [Google Scholar]
  39. Murray, B. E. ( 1990; ). The life and times of the Enterococcus. Clin Microbiol Rev 3, 46–65.
    [Google Scholar]
  40. Nilsen, T. ( 1999; ). Novel enterococcal bacteriocins; optimization of production, purification, biochemical and genetic chacterization. PhD thesis, Agricultural University of Norway, Ås, Norway.
  41. Nolling, J., Breton, G., Omelchenko, M. V. & 16 other authors ( 2001; ). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183, 4823–4838.[CrossRef]
    [Google Scholar]
  42. Olmsted, S. B., Dunny, G. M., Erlandsen, S. L. & Wells, C. L. ( 1994; ). A plasmid-encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells. J Infect Dis 170, 1549–1556.[CrossRef]
    [Google Scholar]
  43. Parente, E. & Hill, C. ( 1992; ). Inhibition of Listeria in buffer, broth and milk by enterocin 1146, a bacteriocin produced by Enterococcus faecium. J Food Prot 55, 503–508.
    [Google Scholar]
  44. Piard, J. C., Muriana, P. M., Desmazeaud, M. J. & Klaenhammer, T. R. ( 1992; ). Purification and partial characterisation of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ481. Appl Environ Microbiol 58, 279–284.
    [Google Scholar]
  45. Potvin, C., Leclerc, D., Tremblay, G., Asselin, A. & Bellemare, G. ( 1988; ). Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. Mol Gen Genet 214, 241–248.[CrossRef]
    [Google Scholar]
  46. Recsei, P. A., Gruss, A. D. & Novick, R. P. ( 1987; ). Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci U S A 84, 1127–1131.[CrossRef]
    [Google Scholar]
  47. Riley, M. A. ( 1993; ). Molecular mechanisms of colicin evolution. Mol Biol Evol 10, 1380–1395.
    [Google Scholar]
  48. Ryan, M. P., Rea, M. C., Hill, C. & Ross, R. P. ( 1996; ). An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62, 612–619.
    [Google Scholar]
  49. Schindler, C. A. & Schuhardt, V. T. ( 1964; ). Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc Natl Acad Sci U S A 51, 414–421.[CrossRef]
    [Google Scholar]
  50. Schleifer, K. H. & Fischer, U. ( 1982; ). Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int J Syst Bacteriol 32, 153–156.[CrossRef]
    [Google Scholar]
  51. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  52. Shankar, V., Baghdayan, A. S., Huycke, M. M., Lindahl, G. & Gilmore, M. S. ( 1999; ). Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67, 193–200.
    [Google Scholar]
  53. Simjee, S. & Gill, M. J. ( 1997; ). Gene transfer, gentamicin resistance and enterococci. J Hosp Infect 36, 249–259.[CrossRef]
    [Google Scholar]
  54. Simmonds, R. S., Simpson, W. J. & Tagg, J. R. ( 1997; ). Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189, 255–261.[CrossRef]
    [Google Scholar]
  55. Singh, K. V., Coque, T. M., Weinstock, G. M. & Murray, B. E. ( 1998; ). In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol 21, 323–331.[CrossRef]
    [Google Scholar]
  56. Su, Y. A., Sulavik, M. C., He, P., Makinen, K. K., Makinen, P. L., Fiedler, S., Wirth, R. & Clewell, D. B. ( 1991; ). Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59, 415–420.
    [Google Scholar]
  57. Sugai, M., Fujiwara, T., Akiyama, T., Ohara, M., Komatsuzawa, H., Inoue, S. & Suginaka, H. ( 1997; ). Purification and molecular characterization of glycylglycine endopeptidase produced by Staphylococcus capitis EPK1. J Bacteriol 179, 1193–1202.
    [Google Scholar]
  58. Teuber, M., Perreten, V. & Wirsching, F. ( 1996; ). Antibiotikumresistente Bakterien: eine neue Dimension in der Lebensmittelmikrobiiologie. Lebensmittel-Technologie 29, 182–199.
    [Google Scholar]
  59. Trieu-Cuot, P. & Courvalin, P. ( 1983; ). Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotransferase type III. Gene 23, 331–341.[CrossRef]
    [Google Scholar]
  60. Watanabe, K., Hayashida, M., Ishibashi, K. & Nakashima, Y. ( 1984; ). An N-acetylmuramidase induced by PL-1 phage infection of Lactobacillus casei. J Gen Microbiol 130, 275–277.
    [Google Scholar]
  61. Wirth, R. ( 1994; ). The sex pheromone system of Enterococcus faecalis. More than just a plasmid-collection mechanism? Eur J Biochem 222, 235–246.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25949-0
Loading
/content/journal/micro/10.1099/mic.0.25949-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error