1887

Abstract

Prokaryotes use a wide variety of structures to facilitate motility. The majority of research to date has focused on swimming motility and the molecular architecture of the bacterial flagellum. While intriguing questions remain, especially concerning the specialized export system involved in flagellum assembly, for the most part the structural components and their location within the flagellum and function are now known. The same cannot be said of the other apparati including archaeal flagella, type IV pili, the junctional pore, ratchet structure and the contractile cytoskeleton used by a variety of organisms for motility. In these cases, many of the structural components have yet to be identified and the mechanism of action that results in motility is often still poorly understood. Research on the bacterial flagellum has greatly aided our understanding of not only motility but also protein secretion and genetic regulation systems. Continued study and understanding of all prokaryotic motility structures will provide a wealth of knowledge that is sure to extend beyond the bounds of prokaryotic movement.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25948-0
2003-02-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149295.html?itemId=/content/journal/micro/10.1099/mic.0.25948-0&mimeType=html&fmt=ahah

References

  1. Aizawa, S.-I. ( 1996; ). Flagella assembly in Salmonella typhimurium. Mol Microbiol 19, 1–5.[CrossRef]
    [Google Scholar]
  2. Aldridge, P. & Hughes, K. T. ( 2001; ). How and when are substrates selected for type III secretion? Trends Microbiol 9, 209–214.[CrossRef]
    [Google Scholar]
  3. Aldridge, P. & Hughes, K. T. ( 2002; ). Regulation of flagellar assembly. Curr Opin Microbiol 5, 160–165.[CrossRef]
    [Google Scholar]
  4. Alm, R. A. & Mattick, J. S. ( 1997; ). Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192, 89–98.[CrossRef]
    [Google Scholar]
  5. Atsumi, T., McCarter, L. & Imae, Y. ( 1992; ). Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182–184.[CrossRef]
    [Google Scholar]
  6. Auvrey, F., Ozin, A. J., Claret, L. & Hughes, C. ( 2002; ). Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J Mol Biol 318, 941–950.[CrossRef]
    [Google Scholar]
  7. Bardy, S. L. & Jarrell, K. F. ( 2002; ). FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett 208, 53–59.[CrossRef]
    [Google Scholar]
  8. Bardy, S. L., Mori, T., Komoriya, K., Aizawa, S.-I. & Jarrell, K. F. ( 2002; ). Identification and localization of flagellins FlaA and FlaB3 within the flagella of Methanococcus voltae. J Bacteriol 184, 5223–5233.[CrossRef]
    [Google Scholar]
  9. Bourret, R. B., Charon, N. W., Stock, A. M. & West, A. H. ( 2002; ). Bright lights, abundant operons – fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14–19 January 2001. J Bacteriol 184, 1–17.[CrossRef]
    [Google Scholar]
  10. Cohen-Krausz, S. & Trachtenberg, S. ( 2002; ). The structure of the archaebacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J Mol Biol 321, 383–395.[CrossRef]
    [Google Scholar]
  11. Forest, K. T. & Tainer, J. A. ( 1997; ). Type-4 pilus-structure: outside to inside and top to bottom – a minireview. Gene 192, 165–169.[CrossRef]
    [Google Scholar]
  12. Gonzalez-Pedrajo, B., Fraser, G. M., Minamino, T. & Macnab, R. M. ( 2002; ). Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol 45, 967–982.[CrossRef]
    [Google Scholar]
  13. Harshey, R. M. & Matsuyama, T. ( 1994; ). Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 92, 8631–8635.
    [Google Scholar]
  14. Hoiczyk, E. & Baumeister, W. ( 1998; ). The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr Biol 8, 1161–1168.[CrossRef]
    [Google Scholar]
  15. Hughes, K. T. & Aldridge, P. D. ( 2001; ). Putting a lid on it. Nat Struct Biol 8, 96–97.[CrossRef]
    [Google Scholar]
  16. Hunnicutt, D. W., Kempf, M. J. & McBride, M. J. ( 2002; ). Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J Bacteriol 184, 2370–2378.[CrossRef]
    [Google Scholar]
  17. Kawagishi, I., Maekawa, Y., Atsumi, T., Homma, M. & Imae, Y. ( 1995; ). Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol 177, 5158–5160.
    [Google Scholar]
  18. Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M. ( 1996; ). The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20, 693–699.[CrossRef]
    [Google Scholar]
  19. Kirov, S., Tassell, B., Semmler, A., O'Donovan, L., Rabaan, A. & Shaw, J. ( 2002; ). Lateral flagella and swarming motility in Aeromonas species. J Bacteriol 184, 547–555.[CrossRef]
    [Google Scholar]
  20. Li, C., Motaleb, A., Sal, M., Goldstein, S. F. & Charon, N. W. ( 2000a; ). Spirochete periplasmic flagella and motility. J Mol Microbiol Biotechnol 2, 345–354.
    [Google Scholar]
  21. Li, C., Corum, L., Morgan, D., Rosey, E. L., Stanton, T. B. & Charon, N. W. ( 2000b; ). The spirochete FlaA periplasmic flagellar sheath protein impacts flagellar helicity. J Bacteriol 182, 6698–6706.[CrossRef]
    [Google Scholar]
  22. Macnab, R. M. ( 1999; ). The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181, 7149–7153.
    [Google Scholar]
  23. Makishima, S., Komriya, M., Yamaguchi, S. & Aizawa, S.-I. ( 2001; ). Length of the flagellar hook and the capacity of the type III export apparatus. Science 291, 2411–2413.[CrossRef]
    [Google Scholar]
  24. Mattick, J. S. ( 2002; ). Type IV pili and twitching motility. Annu Rev Microbiol 56, 289–314.[CrossRef]
    [Google Scholar]
  25. McBride, M. J. ( 2001; ). Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55, 49–75.[CrossRef]
    [Google Scholar]
  26. McCarter, L. ( 2001; ). Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65, 445–462.[CrossRef]
    [Google Scholar]
  27. McCarter, L. & Silverman, M. ( 1990; ). Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol 4, 1057–1062.[CrossRef]
    [Google Scholar]
  28. Minamino, T. & Macnab, R. M. ( 2000; ). Domain structure of Salmonella FlhB, a flagella export component responsible for substrate specificity switching. J Bacteriol 182, 4906–4914.[CrossRef]
    [Google Scholar]
  29. Minamino, T., Tame, J. R. H., Namba, K. & Macnab, R. M. ( 2001; ). Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella. J Mol Biol 312, 1017–1036.
    [Google Scholar]
  30. Minamino, T., Gonzalez-Pedrajo, B., Oosawa, K., Namba, K. & Macnab, R. M. ( 2002; ). Structural properties of FliH, an ATPase regulatory component of the Salmonella type III flagellar export apparatus. J Mol Biol 322, 281–290.[CrossRef]
    [Google Scholar]
  31. Motaleb, A., Corum, L., Bono, J., Elias, A., Rosa, P., Samuels, D. & Charon, N. W. ( 2000; ). Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci U S A 97, 10899–10904.[CrossRef]
    [Google Scholar]
  32. Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. ( 2001; ). Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 98, 2503–2508.[CrossRef]
    [Google Scholar]
  33. Ramer, S. W., Schoolnik, G. K., Wu, C. Y., Hwang, J., Schmidt, S. A. & Bieber, D. ( 2002; ). The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli. J Bacteriol 184, 3457–3465.[CrossRef]
    [Google Scholar]
  34. Rodriguez-Soto, J. P. & Kaiser, D. ( 1997; ). Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility. J Bacteriol 179, 4372–4381.
    [Google Scholar]
  35. Rudolph, J. & Oesterhelt, D. ( 1996; ). Deletion alaysis of the che operon in the archaeon Halobacterium salinarium. J Mol Biol 258, 548–554.[CrossRef]
    [Google Scholar]
  36. Samatey, F. A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M. & Namba, K. ( 2001; ). Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337.[CrossRef]
    [Google Scholar]
  37. Semmler, A. B. T., Whitchurch, C. B. & Mattick, J. S. ( 1999; ). A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145, 2863–2873.
    [Google Scholar]
  38. Shi, W. & Sun, H. ( 2002; ). Type IV pilus-dependent motility and its possible role in bacterial pathogenesis. Infect Immun 70, 1–4.[CrossRef]
    [Google Scholar]
  39. Skerker, J. M. & Berg, H. C. ( 2001; ). Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98, 6901–6904.[CrossRef]
    [Google Scholar]
  40. Spormann, A. M. ( 1999; ). Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63, 621–641.
    [Google Scholar]
  41. Thanassi, D. G. & Hultgren, S. J. ( 2000; ). Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 12, 420–430.[CrossRef]
    [Google Scholar]
  42. Thomas, N. A., Bardy, S. L. & Jarrell, K. F. ( 2001; ). The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 25, 147–174.[CrossRef]
    [Google Scholar]
  43. Trachtenberg, S. ( 1998; ). Mollicutes – wall-less bacteria with internal skeletons. J Struct Biol 124, 244–256.[CrossRef]
    [Google Scholar]
  44. Trachtenberg, S. & Gilad, R. ( 2001; ). A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol Microbiol 41, 827–848.
    [Google Scholar]
  45. Wall, D. & Kaiser, D. ( 1999; ). Type IV pili and cell motility. Mol Microbiol 32, 1–10.[CrossRef]
    [Google Scholar]
  46. Whitchurch, C. B., Hobbs, M., Livingston, S. P., Krishnapillai, V. & Mattick, J. S. ( 1991; ). Characterization of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 101, 33–44.[CrossRef]
    [Google Scholar]
  47. Wolgemuth, C., Hoiczyk, E., Kaiser, D. & Oster, G. ( 2002; ). How myxobacteria glide. Curr Biol 12, 369–377.[CrossRef]
    [Google Scholar]
  48. Yonekura, K., Maki, S., Morgan, D. G., DeRosier, D. J., Vonderviszt, F., Imada, K. & Namba, K. ( 2000; ). The bacterial flagellar cap as a rotary promoter of flagellin self-assembly. Science 290, 2148–2152.[CrossRef]
    [Google Scholar]
  49. Zhu, K., Gonzalez-Pedrajo, B. & Macnab, R. M. ( 2002; ). Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. Biochemistry 41, 9516–9524.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25948-0
Loading
/content/journal/micro/10.1099/mic.0.25948-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error