1887

Abstract

The genes for nitrous oxide (NO) reduction, , are clustered on the chromosome of . Promoter assays using transcriptional fusions to revealed that the structural gene for nitrous oxide reductase, , is transcribed with the upstream gene. The gene product is not required for the activity of the promoter. A sequence similar to the consensus FNR-binding motif was found 41·5 bp upstream from the major transcriptional start point of . Mutation of the motif significantly reduced the promoter activity. DNR, an FNR-related transcriptional regulator required for the expression of denitrification genes in , is necessary for the transcription of , indicating that the motif is recognized by DNR. Nitrite (NO−2), nitric oxide (NO) and NO-generating reagents induced promoter activity, but NO did not. The NO−2-induced promoter activity was reduced by mutation of the NO−2 reductase gene. However, a low concentration of NO−2 induced the promoter activity in a NO reductase mutant. These results indicate that NO is the inducer molecule for transcription of the genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25936-0
2003-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_4.html?itemId=/content/journal/micro/10.1099/mic.0.25936-0&mimeType=html&fmt=ahah

References

  1. Aono S, Nakajima H, Saito K., Okada M. 1996; A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum. Biochem Biophys Res Commun228:752–756
    [Google Scholar]
  2. Arai H, Igarashi Y., Kodama T. 1994; Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci Biotechnol Biochem58:1286–1291
    [Google Scholar]
  3. Arai H, Igarashi Y., Kodama T. 1995a; The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. Biochim Biophys Acta1261:279–284
    [Google Scholar]
  4. Arai H, Igarashi Y., Kodama T. 1995b; Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett371:73–76
    [Google Scholar]
  5. Arai H, Zhang Y, Sambongi Y, Igarashi Y., Kodama T. 1995c; Production of recombinant cytochrome c -551 in a Pseudomonas aeruginosa mutant strain. J Ferment Bioeng79:489–492
    [Google Scholar]
  6. Arai H, Kodama T., Igarashi Y. 1997; Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol Microbiol25:1141–1148
    [Google Scholar]
  7. Arai H, Akahira S, Ohishi T., Kudo T. 1999a; Adaptation of Comamonas testosteroni TA441 to utilization of phenol by spontaneous mutation of the gene for a trans -acting factor. Mol Microbiol33:1132–1140
    [Google Scholar]
  8. Arai H, Kodama T., Igarashi Y. 1999b; Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol Lett170:19–24
    [Google Scholar]
  9. Braun C., Zumft W. G. 1992; The structural genes of the nitric oxide reductase complex from Pseudomonas stutzeri are part of a 30-kilobase gene cluster for denitrification. J Bacteriol174:2394–2397
    [Google Scholar]
  10. Brown K, Tegoni M, Prudencio M, Pereira A. S, Besson S, Moura J. J, Moura I., Cambillau C. 2000; A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol7:191–195
    [Google Scholar]
  11. Bryan B. A, Jeter R. M., Carlson C. A. 1985; Inability of Pseudomonas stutzeri denitrification mutants with the phenotype of Pseudomonas aeruginosa to grow in nitrous oxide. Appl Environ Microbiol50:1301–1303
    [Google Scholar]
  12. Carlson C. A., Ingraham J. L. 1983; Comparison of denitrification by Pseudomonas stutzeri , Pseudomonas aeruginosa , and Paracoccus denitrificans. Appl Environ Microbiol45:1247–1253
    [Google Scholar]
  13. Coyle C. L, Zumft W. G, Kroneck P. M, Körner H., Jakob W. 1985; Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina . Purification and properties of a novel multicopper enzyme. Eur J Biochem153:459–467
    [Google Scholar]
  14. Cuypers H, Viebrock-Sambale A., Zumft W. G. 1992; NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J Bacteriol174:5332–5339
    [Google Scholar]
  15. Cuypers H, Berghöfer J., Zumft W. G. 1995; Multiple nosZ promoters and anaerobic expression of nos genes necessary for Pseudomonas stutzeri nitrous oxide reductase and assembly of its copper centers. Biochim Biophys Acta1264:183–190
    [Google Scholar]
  16. Dreusch A, Riester J, Kroneck P. M., Zumft W. G. 1996; Mutation of the conserved Cys165 outside of the CuA domain destabilizes nitrous oxide reductase but maintains its catalytic activity. Evidence for disulfide bridges and a putative protein disulfide isomerase gene. Eur J Biochem237:447–453
    [Google Scholar]
  17. Dunn N. W., Holloway B. W. 1971; Pleiotropy of p -fluorophenylalanine-resistant and antibiotic hypersensitive mutant of Pseudomonas aeruginosa. Genet Res18:185–197
    [Google Scholar]
  18. Farinha M. A., Kropinski A. M. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499
    [Google Scholar]
  19. Guest J. R. 1992; Oxygen-regulated gene expression in Escherichia coli . The 1992 Marjory Stephenson Prize Lecture. J Gen Microbiol138:2253–2263
    [Google Scholar]
  20. Hasegawa N, Arai H., Igarashi Y. 1998; Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol Lett166:213–217
    [Google Scholar]
  21. Hendriks J. H. M, Prior L, Baker A. R, Thomson A. J, Saraste M., Watmough N. J. 2001; Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase. Biochemistry40:13361–13369
    [Google Scholar]
  22. Hulse C. L., Averill B. A. 1990; Isolation of a high specific activity pink, monomeric nitrous oxide reductase from Achromobacter cycloclastes. Biochem Biophys Res Commun166:729–735
    [Google Scholar]
  23. Hutchings M. I, Shearer N, Wastell S, van Spanning R. J. M., Spiro S. 2000; Heterologous NNR-mediated nitric oxide signaling in Escherichia coli. J Bacteriol182:6434–6439
    [Google Scholar]
  24. Jüngst A, Braun C., Zumft W. G. 1991; Close linkage in Pseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Mol Gen Genet225:241–248
    [Google Scholar]
  25. Kawasaki S, Arai H, Igarashi Y., Kodama T. 1995; Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c -551 ( nirSM ) from Pseudomonas aeruginosa : identification of the gene necessary for biosynthesis of heme d 1. Gene167:87–91
    [Google Scholar]
  26. Kiley P. J., Beinert H. 1999; Oxygen sensing by the global regulator, FNR: the role of the iron–sulfur cluster. FEMS Microbiol Rev22:341–352
    [Google Scholar]
  27. Kwiatkowski A. V, Laratta W. P, Toffanin A., Shapleigh J. P. 1997; Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide. J Bacteriol179:5618–5620
    [Google Scholar]
  28. Lide D. R. editor 1999; CRC Handbook of Chemistry and Physics, 80th edn. pp8–87 Boca Raton, FL: CRC Press;
    [Google Scholar]
  29. Lodge J, Williams R, Bell A, Chan B., Busby S. 1990; Comparison of promoter activities in Escherichia coli and Pseudomonas aeruginosa : use of a new broad-host-range promoter-probe plasmid. FEMS Microbiol Lett67:221–225
    [Google Scholar]
  30. Sambrook J, Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Saunders N. F. W, Houben E. N. G, Koefoed S, de Weert S, Reijnders W. N. M, Westerhoff H. V, de Boer A. P. N., van Spanning R. J. M. 1999; Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Mol Microbiol34:24–36
    [Google Scholar]
  32. Snyder S. W., Hollocher T. C. 1987; Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J Biol Chem262:6515–6525
    [Google Scholar]
  33. Snyder S. W, Bazylinski D. A., Hollocher T. C. 1987; Loss of N2O reductase activity as an explanation for poor growth of Pseudomonas aeruginosa on N2O. Appl Environ Microbiol53:2045–2049
    [Google Scholar]
  34. SooHoo C. K., Hollocher T. C. 1990; Loss of nitrous oxide reductase in Pseudomonas aeruginosa cultured under N2O as determined by rocket immunoelectrophoresis. Appl Environ Microbiol56:3591–3592
    [Google Scholar]
  35. SooHoo C. K., Hollocher T. C. 1991; Purification and characterization of nitrous oxide reductase from Pseudomonas aeruginosa strain P2. J Biol Chem266:2203–2209
    [Google Scholar]
  36. Stover C. K, Pham X. Q, Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964
    [Google Scholar]
  37. Viebrock A., Zumft W. G. 1988; Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol170:4658–4668
    [Google Scholar]
  38. Vollack K.-U., Zumft W. G. 2001; Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J Bacteriol183:2516–2526
    [Google Scholar]
  39. Wood P. M. 1978; Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett92:214–218
    [Google Scholar]
  40. Ye R. W, Arunakumari A, Averill B. A., Tiedje J. M. 1992; Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol174:2560–2564
    [Google Scholar]
  41. Ye R. W, Haas D, Ka J.-O, Krishnapillai V, Zimmermann A, Baird C., Tiedje J. M. 1995; Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol177:3606–3609
    [Google Scholar]
  42. Zimmermann A, Reimmann C, Galimand M., Haas D. 1991; Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr , a regulatory gene homologous with fnr of Escherichia coli. Mol Microbiol5:1483–1490
    [Google Scholar]
  43. Zumft W. G. 1993; The biological role of nitric oxide in bacteria. Arch Microbiol160:253–264
    [Google Scholar]
  44. Zumft W. G, Viebrock-Sambale A., Braun C. 1990; Nitrous oxide reductase from denitrifying Pseudomonas stutzeri . Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur J Biochem192:591–599
    [Google Scholar]
  45. Zumft W. G, Dreusch A, Löchelt S, Cuypers H, Friedrich B., Schneider B. 1992; Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus , Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome- c oxidase. Eur J Biochem208:31–40
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25936-0
Loading
/content/journal/micro/10.1099/mic.0.25936-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error