1887

Abstract

This study examined the quantitative variation of biofilm formation and its relationship to multilocus genotypes in 115 strains of the human pathogenic fungus . These strains were isolated from three sources: 47 from oral cavities of healthy volunteers, 31 from the environment and 37 from the vaginas of patients with candidiasis. For each strain, biofilm formation was quantified as the ability to adhere to and grow on polystyrene plastic surfaces. Confocal laser scanning microscopy was used to visualize and confirm biofilm formation. Two methods were used to quantify biofilm formation abilities: (i) the XTT reduction assay, and (ii) absorbance following staining by crystal violet dye. Results obtained by the two methods were significantly correlated. Furthermore, biofilm formation ability was positively correlated with cell surface hydrophobicity. The analyses indicated that strains from each of the three sources varied widely in biofilm formation abilities. However, little correlation was observed between biofilm formation and multilocus genotypes as determined by PCR-RFLP at 16 polymorphic loci, regardless of source of strain. Strains with the same or similar multilocus genotypes often showed very different biofilm formation abilities. The results demonstrated that natural clones and clonal lineages of exhibited extensive quantitative variation in biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25932-0
2003-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149353.html?itemId=/content/journal/micro/10.1099/mic.0.25932-0&mimeType=html&fmt=ahah

References

  1. Adam, B., Baillie, G. S. & Douglas, L. J. ( 2002; ). Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51, 344–349.
    [Google Scholar]
  2. Bachmann, S. P., VandeWalle, K., Ramage, G., Patterson, T. F., Wickes, B. L., Graybill, J. R. & Lopez-Ribot, J. L. ( 2002; ). In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 46, 3591–3596.[CrossRef]
    [Google Scholar]
  3. Bagge, N., Ciofu, O., Skovgaard, L. T. & Hoiby, N. ( 2000; ). Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal β-lactamase. APMIS 108, 589–600.[CrossRef]
    [Google Scholar]
  4. Baillie, G. S. & Douglas, L. J. ( 1998; ). Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 42, 1900–1905.
    [Google Scholar]
  5. Baillie, G. S. & Douglas, L. J. ( 1999; ). Candida biofilms and their susceptibility to antifungal agents. Methods Enzymol 310, 644–656.
    [Google Scholar]
  6. Baillie, G. S. & Douglas, L. J. ( 2000; ). Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46, 397–403.[CrossRef]
    [Google Scholar]
  7. Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T. & Ghannoum, M. A. ( 2001; ). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 83, 5385–5394.
    [Google Scholar]
  8. Chen, R.-S., Boegen, J. M. & McDonald, B. A. ( 1994; ). Genetic stability in a population of a plant pathogenic fungus over time. Mol Ecol 3, 209–218.[CrossRef]
    [Google Scholar]
  9. Cowen, L. E., Sirjusingh, C., Summerbell, R. C., Walmsley, S., Richardson, S., Kohn, L. M. & Anderson, J. B. ( 1999; ). Multilocus genotypes and DNA fingerprints do not predict variation in azole resistance among clinical isolates of Candida albicans. Antimicrob Agents Chemother 43, 2930–2938.
    [Google Scholar]
  10. Cox, G. M. & Perfect, J. R. ( 1993; ). Fungal infections. Curr Opin Infect Dis 6, 422–426.
    [Google Scholar]
  11. Djordjevic, D., Wiedmann, M. & McLandsborough, L. A. ( 2002; ). Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68, 2950–2958.[CrossRef]
    [Google Scholar]
  12. Donlan, R. M. ( 2001; ). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33, 1387–1392.[CrossRef]
    [Google Scholar]
  13. el-Azizi, M. & Khardori, N. ( 1999; ). Factors influencing adherence of Candida spp. to host tissues and plastic surfaces. Indian J Exp Biol 37, 941–951.
    [Google Scholar]
  14. Hawser, S. P. ( 1996; ). Adhesion of different Candida spp. to plastic: XTT formazan determinations. J Med Vet Mycol 34, 407–410.[CrossRef]
    [Google Scholar]
  15. Hawser, S. P. & Douglas, L. J. ( 1994; ). Biofilm formation by Candida species on the surface of catheter material in vitro. Infect Immun 62, 915–921.
    [Google Scholar]
  16. Hazen, K. C., Plotkin, B. J. & Klimas, D. M. ( 1986; ). Influence of growth on cell surface hydrophobicity of Candida albicans and Candida glabrata. Infect Immun 54, 269–271.
    [Google Scholar]
  17. Hellstein, J., Vawter-Hugart, H., Fotos, P., Schmid, J. & Soll, D. R. ( 1993; ). Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity. J Clin Microbiol 31, 3190–3199.
    [Google Scholar]
  18. Holmstrup, P. & Samaranayake, L. P. ( 1990; ). Acute and AIDS-related oral candidoses. In Oral Candidosis, pp. 133–550. Edited by L. P. Samaranayake and T. W. Macfarlane. London: Wright.
  19. Klotz, S. A., Drutz, D. J. & Zajic, J. E. ( 1985; ). Factors governing adherence of Candida species to plastic surfaces. Infect Immun 50, 97–101.
    [Google Scholar]
  20. Kuhn, D. M., Chandra, J., Mukherjee, P. K. & Ghannoum, M. A. ( 2002; ). Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70, 878–888.[CrossRef]
    [Google Scholar]
  21. Lynch, M. & Walsh, B. ( 1998; ). Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates.
  22. Merritt, K., Gaind, A. & Anderson, J. M. ( 1998; ). Detection of bacterial adherence on biomedical polymers. J Biomed Mater Res 39, 415–422.[CrossRef]
    [Google Scholar]
  23. Merritt, K., Hitchins, V. M. & Brown, S. A. ( 2000; ). Safety and cleaning of medical materials and devices. J Biomed Mater Res 53, 131–136.[CrossRef]
    [Google Scholar]
  24. Neu, T. R., Verkerke, G. J., Herrmann, I. F., Schutt, H. K., Van der Mei, H. C. & Busscher, H. J. ( 1994; ). Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility. J Appl Bacteriol 76, 521–528.[CrossRef]
    [Google Scholar]
  25. Odds, F. C. ( 1988; ). Candida and Candidosis, 2nd edn. London: Bailliere Tindall.
  26. O'Toole, G. A., Kaplan, H. B. & Kolter, R. ( 2000; ). Biofilm formation as microbial development. Annu Rev Microbiol 54, 49–79.[CrossRef]
    [Google Scholar]
  27. Pujol, C., Reynes, J., Renaud, F., Raymond, M., Tibayrenc, M., Ayala, F. J., Janbon, F., Mallie, M. & Bastide, J.-M. ( 1993; ). The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc Natl Acad Sci U S A 90, 9456–9459.[CrossRef]
    [Google Scholar]
  28. Ramage, G., VandeWalle, K., Wickes, B. L. & Lopez-Ribot, J. L. ( 2001; ). Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45, 2475–2479.[CrossRef]
    [Google Scholar]
  29. Reynolds, T. B. & Fink, G. R. ( 2001; ). Bakers' yeast, a model for fungal biofilm formation. Science 291, 878–881.[CrossRef]
    [Google Scholar]
  30. Samaranayake, Y. H., Wu, P. C., Samaranayake, L. P. & So, M. ( 1995; ). Relationship between the cell surface hydrophobicity and adherence of Candida krusei and Candida albicans to epithelia and denture acrylic surfaces. APMIS 103, 707–713.[CrossRef]
    [Google Scholar]
  31. San Millan, R., Ezkurra, P. A., Quindos, G., Robert, R., Senet, J. M. & Ponton, J. ( 1996; ). Effect of monoclonal antibodies directed against Candida albicans cell wall antigens on the adhesion of the fungus to polystyrene. Microbiology 142, 2271–2277.[CrossRef]
    [Google Scholar]
  32. Shin, J. H., Kee, S. J., Shin, M. G., Kim, S. H., Shin, D. H., Lee, S. K., Suh, S. P. & Ryang, D. W. ( 2002; ). Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40, 1244–1248.[CrossRef]
    [Google Scholar]
  33. Silva, T. M., Glee, P. M. & Hazen, K. C. ( 1995; ). Influence of cell surface hydrophobicity on attachment of Candida albicans to extracellular matrix proteins. J Med Vet Mycol 33, 117–122.[CrossRef]
    [Google Scholar]
  34. Simpson, A. ( 1949; ). Measurement of diversity. Nature 163, 688.[CrossRef]
    [Google Scholar]
  35. Sokal, R. R. & Rohlf, F. J. ( 1981; ). Biometry: the Principles and Practice of Statistics in Biological Research, 2nd edn. New York: W. H. Freeman.
  36. Soll, D. R. ( 1992; ). High-frequency switching in Candida albicans. Clin Microbiol Rev 5, 183–203.
    [Google Scholar]
  37. Soll, D. R. ( 2002; ). Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop. 81, 101–110.
  38. Stoddart, J. A. & Taylor, J. F. ( 1988; ). Genotypic diversity: estimation and predication in samples. Genetics 118, 705–711.
    [Google Scholar]
  39. Swofford, D. L. ( 2002; ). PAUP 4.0: Phylogenetic Analysis Using Parsimony. Sunderland, MA: Sinauer Associates.
  40. Tunnet, M. M., Gorman, S. P. & Patrick, S. ( 1996; ). Infection associated with medical devices. Rev Med Microbiol 7, 195–205.[CrossRef]
    [Google Scholar]
  41. Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. & Lejune, P. ( 1998; ). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180, 2442–2449.
    [Google Scholar]
  42. Watnick, P. I., Fullner, K. J. & Kolter, R. ( 1999; ). A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181, 3606–3609.
    [Google Scholar]
  43. Xu, J. & Mitchell, T. G. ( 2002; ). Strain variation and clonality in species of Candida and Cryptococcus neoformans. In Fungal Pathogenesis: Principles and Clinical Applications, pp. 739–750. Edited by R. Calderone and R. L. Cihlar. New York: Marcel Dekker.
  44. Xu, J., Mitchell, T. G. & Vilgalys, R. ( 1999a; ). PCR-restriction fragment length polymorphism (RFLP) analyses reveal both extensive clonality and local genetic differences in Candida albicans. Mol Ecol 8, 59–73.[CrossRef]
    [Google Scholar]
  45. Xu, J., Vilgalys, R. & Mitchell, T. G. ( 1999b; ). Lack of genetic differentiation between two geographic samples of Candida albicans isolated from patients infected with the Human Immunodeficiency Virus. J Bacteriol 181, 1369–1373.
    [Google Scholar]
  46. Xu, J., Ramos, A. R., Vilgalys, R. & Mitchell, T. G. ( 2000a; ). Clonal and spontaneous origins of fluconazole resistance in Candida albicans. J Clin Microbiol 38, 1214–1220.
    [Google Scholar]
  47. Xu, J., Vilgalys, R. & Mitchell, T. G. ( 2000b; ). Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol Ecol 9, 1471–1481.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25932-0
Loading
/content/journal/micro/10.1099/mic.0.25932-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error