1887

Abstract

The genus , whose members are Gram-negative non-fermentative rods, possesses ceramides and related sphingophospholipids (SPLs) with isoheptadecasphinganine and 2-hydroxy or non-hydroxy isopentadecanoic acid. This paper reports evidence that ceramides isolated from ATCC 33861 induce endonucleolytic DNA cleavage in human myeloid leukaemia HL-60 cells , which is the primary characteristic biochemical marker for apoptosis or programmed cell death. Ceramides and SPLs also induced DNA fragmentation and caspase-3 activation, followed by changes in morphology, such as alterations in the size of nuclei and cells, and cell cycle shortening. Apoptotic activity correlated with the ceramide structure. Ceramide with a 2-hydroxy fatty acid showed stronger apoptotic activity than ceramide with a non-hydroxy fatty acid. Furthermore, the major five SPLs (ceramide phosphorylethanolamine-1 and -2, ceramide phosphorylinositol-1 and -2, and ceramide phosphorylmannose-1) showed apoptosis-inducing activity in HL-60 cells, indicating that the ceramide moiety of the SPLs plays a crucial role as the intracellular second messenger but that their hydrophilicity is less important in this regard. The hydrophilic part of SPLs may play a role in other cellular response systems. The involvement of Fas antigen was implicated in the apoptotic event since Fas antigen expression was observed after 3 or 4 h stimulation of HL-60 cells with bacterial ceramides. However, a time-course study for caspase-3 activation indicated maximal activity at 1 h after stimulation with bacterial ceramides, suggesting that two (or possibly more) mechanisms of signal transduction, Fas-dependent and Fas-independent, may be involved. Fas antigen expression and caspase-3 activation by five kinds of SPLs were observed after 3 or 4 h. These results indicate that there is a difference in the response of HL-60 cells to bacterial ceramides and SPLs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25922-0
2003-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492071.html?itemId=/content/journal/micro/10.1099/mic.0.25922-0&mimeType=html&fmt=ahah

References

  1. Allan, D. ( 2000; ). Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. Biochem J 345, 603–610.[CrossRef]
    [Google Scholar]
  2. Damjanovski, S., Amano, T., Li, Q., Ueda, S., Shi, Y. B. & Ishizuya-Oka, A. ( 2000; ). Role of ECM remodeling in thyroid hormone-dependent apoptosis during anuran metamorphosis. Ann N Y Acad Sci 926, 180–191.
    [Google Scholar]
  3. Decaudin, D., Geley, S., Hirsch, T., Castedo, M., Marchetti, P., Macho, A., Kofler, R. & Kroemer, G. ( 1997; ). Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 57, 62–67.
    [Google Scholar]
  4. Deng, G. & Podack, E. R. ( 1993; ). Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc Natl Acad Sci U S A 90, 2189–2193.[CrossRef]
    [Google Scholar]
  5. Eischen, C. M., Schilling, J. D., Lynch, D. H., Krammer, P. H. & Leibson, P. J. ( 1996; ). Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis. J Immunol 156, 2693–2699.
    [Google Scholar]
  6. Ferrarini, M., Imro, M. A., Sciorati, C., Heltai, S., Protti, M. P., Pellicciari, C., Rovere, P., Manfredi, A. A. & Rugarli, C. ( 1999; ). Blockade of the Fas-triggered intracellular signaling pathway in human melanomas is circumvented by cytotoxic lymphocytes. Int J Cancer 81, 573–579.[CrossRef]
    [Google Scholar]
  7. Folch, J., Lees, M. & Sloane Stanley, G. H. ( 1959; ). A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497–509.
    [Google Scholar]
  8. Furuya, S., Ono, K. & Hirabayashi, Y. ( 1995; ). Sphingolipid biosynthesis is necessary for dendrite growth and survival of cerebellar Purkinje cells in culture. J Neurochem 65, 1551–1561.
    [Google Scholar]
  9. Goodman, Y. & Mattson, M. P. ( 1996; ). Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta-peptide toxicity. J Neurochem 66, 869–872.
    [Google Scholar]
  10. Gorczyca, W., Gong, J., Ardelt, B., Traganos, F. & Darzynkiewicz, Z. ( 1993; ). The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res 53, 3186–3192.
    [Google Scholar]
  11. Hannun, Y. A. & Obeid, L. M. ( 1995; ). Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20, 73–77.[CrossRef]
    [Google Scholar]
  12. Hannun, Y. A., Loomis, C. R., Merrill, A. H., Jr & Bell, R. M. ( 1986; ). Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261, 12604–12609.
    [Google Scholar]
  13. Harel, R. & Futerman, A. H. ( 1993; ). Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem 268, 14476–14481.
    [Google Scholar]
  14. Hartfield, P. J., Mayne, G. C. & Murray, A. W. ( 1997; ). Ceramide induces apoptosis in PC12 cells. FEBS Lett 401, 148–152.[CrossRef]
    [Google Scholar]
  15. Ishizuya-Oka, A. ( 1996; ). Apoptosis of larval cells during amphibian metamorphosis. Microsc Res Tech 34, 228–235.[CrossRef]
    [Google Scholar]
  16. Ito, A. & Horigome, K. ( 1995; ). Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. J Neurochem 65, 463–466.
    [Google Scholar]
  17. Iwata, M., Hotta, H., Higuchi, N., Nishiuchi, N., Fujiwara, N., Arakawa, T., Yano, I. & Kobayashi, K. ( 2002; ). Induction of thymic apoptosis by shigatoxin from Escherichia coli O157 : H7 in vivo and in vitro. Osaka City Med J 47, 11–22.
    [Google Scholar]
  18. Karasavvas, N., Erukulla, R. K., Bittman, R., Lockshin, R. & Zakeri, Z. ( 1996; ). Stereospecific induction of apoptosis in U937 cells by N-octanoyl-sphingosine stereoisomers and N-octyl-sphingosine. The ceramide amide group is not required for apoptosis. Eur J Biochem 236, 729–737.[CrossRef]
    [Google Scholar]
  19. Kawasaki, S., Moriguchi, R., Sekiya, K., Nakai, T., Ono, E., Kume, K. & Kawahara, K. ( 1994; ). The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176, 284–290.
    [Google Scholar]
  20. Kondo, T., Matsuda, T., Tashima, M., Umehara, H., Domae, N., Yokoyama, K., Uchiyama, T. & Okazaki, T. ( 2000a; ). Suppression of heat shock protein-70 by ceramide in heat shock-induced HL-60 cell apoptosis. J Biol Chem 275, 8872–8879.[CrossRef]
    [Google Scholar]
  21. Kondo, T., Matsuda, T., Kitano, T. & 7 other authors ( 2000b; ). Role of c-jun expression increased by heat shock- and ceramide-activated caspase-3 in HL-60 cell apoptosis. Possible involvement of ceramide in heat shock-induced apoptosis. J Biol Chem 275, 7668–7676.[CrossRef]
    [Google Scholar]
  22. Lakics, V. & Vogel, S. N. ( 1998; ). Lipopolysaccharide and ceramide use divergent signaling pathways to induce cell death in murine macrophages. J Immunol 161, 2490–2500.
    [Google Scholar]
  23. Lavie, Y., Cao, H., Volner, A., Lucci, A., Han, T. Y., Geffen, V., Giuliano, A. E. & Cabot, M. C. ( 1997; ). Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272, 1682–1687.[CrossRef]
    [Google Scholar]
  24. Linardic, C. M. & Hannun, Y. A. ( 1994; ). Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle. J Biol Chem 269, 23530–23537.
    [Google Scholar]
  25. Liu, P. & Anderson, R. G. ( 1995; ). Compartmentalized production of ceramide at the cell surface. J Biol Chem 270, 27179–27185.[CrossRef]
    [Google Scholar]
  26. Mansat, V., Laurent, G., Levade, T., Bettaieb, A. & Jaffrezou, J. P. ( 1997; ). The protein kinase C activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. Cancer Res 57, 5300–5304.
    [Google Scholar]
  27. McConkey, D. J., Nicotera, P. & Orrenius, S. ( 1994; ). Signalling and chromatin fragmentation in thymocyte apoptosis. Immunol Rev 142, 343–363.[CrossRef]
    [Google Scholar]
  28. Mizushima, N., Koike, R., Kohsaka, H., Kushi, Y., Handa, S., Yagita, H. & Miyasaka, N. ( 1996; ). Ceramide induces apoptosis via CPP32 activation. FEBS Lett 395, 267–271.[CrossRef]
    [Google Scholar]
  29. Nakamura, S., Kozutsumi, Y., Sun, Y., Miyake, Y., Fujita, T. & Kawasaki, T. ( 1996; ). Dual roles of sphingolipids in signaling of the escape from and onset of apoptosis in a mouse cytotoxic T-cell line, CTLL-2. J Biol Chem 271, 1255–1257.[CrossRef]
    [Google Scholar]
  30. Nakashima, K., Ohtsuka, A. & Hayashi, K. ( 1998; ). Comparison of the effects of thyroxine and triiodothyronine on protein turnover and apoptosis in primary chick muscle cell cultures. Biochem Biophys Res Commun 251, 442–448.[CrossRef]
    [Google Scholar]
  31. Nakayama, M. ( 2000; ). Structure and apoptosis-inducing activity of sphingolipids isolated from Sphingobacterium spiritivorum. Seikatsu Eisei 42, 135–148.
    [Google Scholar]
  32. Okazaki, T. ( 1999; ). Implications of “ceramide-regulating biostat system” from the discovery of “sphingomyelin cycle” [in Japanese]. Tanpakushitsu Kakusan Koso 44, 1052–1058.
    [Google Scholar]
  33. Okazaki, T. & Domae, N. ( 1994; ). Physiological activity of sphingosine. J Clin Exp Med 171, 913–916.
    [Google Scholar]
  34. Okazaki, T., Bell, R. M. & Hannun, Y. A. ( 1989; ). Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264, 19076–19080.
    [Google Scholar]
  35. Okazaki, T., Bielawska, A., Bell, R. M. & Hannun, Y. A. ( 1990; ). Role of ceramide as a lipid mediator of 1 alpha, 25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 265, 15823–15831.
    [Google Scholar]
  36. Okazaki, T., Bielawska, A., Domae, N., Bell, R. M. & Hannun, Y. A. ( 1994; ). Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha, 25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 269, 4070–4077.
    [Google Scholar]
  37. Ozeki, Y., Kaneda, K., Fujiwara, N., Morimoto, M., Oka, S. & Yano, I. ( 1997; ). In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6′-dimycolate). Infect Immun 65, 1793–1799.
    [Google Scholar]
  38. Parton, R. G. ( 1994; ). Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42, 155–166.[CrossRef]
    [Google Scholar]
  39. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R. & Anderson, R. G. ( 1992; ). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.[CrossRef]
    [Google Scholar]
  40. Saba, J. D., Obeid, L. M. & Hannun, Y. A. ( 1996; ). Ceramide: an intracellular mediator of apoptosis and growth suppression. Philos Trans R Soc Lond B Biol Sci 351, 233–240; discussion 240–231.
    [Google Scholar]
  41. Saito, T. & Kurasaki, M. ( 2000; ). Apoptosis and endocrine disrupters. Biomed Res 21, 353–359.[CrossRef]
    [Google Scholar]
  42. Sawai, H., Okazaki, T., Yamamoto, H. & other authors ( 1995; ). Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J Biol Chem 270, 27326–27331.[CrossRef]
    [Google Scholar]
  43. Schlegel, J., Peters, I., Orrenius, S., Miller, D. K., Thornberry, N. A., Yamin, T. T. & Nicholson, D. W. ( 1996; ). CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem 271, 1841–1844.[CrossRef]
    [Google Scholar]
  44. Schnitzer, J. E., Oh, P. & McIntosh, D. P. ( 1996; ). Role of GTP hydrolysis in fission of caveole directly from plasma membranes. Science 274, 239–242.[CrossRef]
    [Google Scholar]
  45. Schutze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K. & Kronke, M. ( 1992; ). TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71, 765–776.[CrossRef]
    [Google Scholar]
  46. Schwarz, A. & Futerman, A. H. ( 1997; ). Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. J Neurosci 17, 2929–2938.
    [Google Scholar]
  47. Shimizu, S., Eguchi, Y., Kamiike, W., Matsuda, H. & Tsujimoto, Y. ( 1996; ). Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 12, 2251–2257.
    [Google Scholar]
  48. Suzuki, A., Tsutomi, Y., Miura, M. & Akahane, K. ( 1999; ). Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene 18, 1239–1244.[CrossRef]
    [Google Scholar]
  49. Taylor, I. W. ( 1980; ). A rapid single step staining technique for DNA analysis by flow microfluorimetry. J Histochem Cytochem 28, 1021–1024.[CrossRef]
    [Google Scholar]
  50. Tepper, C. G., Jayadev, S., Liu, B., Bielawska, A., Wolff, R., Yonehara, S., Hannun, Y. A. & Seldin, M. F. ( 1995; ). Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci U S A 92, 8443–8447.[CrossRef]
    [Google Scholar]
  51. Tessitore, L., Valente, G., Bonelli, G., Costelli, P. & Baccino, F. M. ( 1989; ). Regulation of cell turnover in the livers of tumour-bearing rats: occurrence of apoptosis. Int J Cancer 44, 697–700.[CrossRef]
    [Google Scholar]
  52. Verheij, M., Bose, R., Lin, X. H. & 10 other authors ( 1996; ). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75–79.[CrossRef]
    [Google Scholar]
  53. Wang, B., Ohyama, H., Haginoya, K., Odaka, T., Itsukaichi, H., Yukawa, O., Yamada, T. & Hayata, I. ( 2000; ). Adaptive response in embryogenesis. III. Relationship to radiation-induced apoptosis and Trp53 gene status. Radiat Res 154, 277–282.[CrossRef]
    [Google Scholar]
  54. Wiegmann, K., Schutze, S., Machleidt, T., Witte, D. & Kronke, M. ( 1994; ). Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78, 1005–1015.[CrossRef]
    [Google Scholar]
  55. Yang, Z., Costanzo, M., Golde, D. W. & Kolesnick, R. N. ( 1993; ). Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL-60 cells. J Biol Chem 268, 20520–20523.
    [Google Scholar]
  56. Yano, I., Tomiyasu, I. & Yabuuchi, E. ( 1982; ). Long chain base comparison of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol Lett 15, 303–307.[CrossRef]
    [Google Scholar]
  57. Yano, I., Imaizumi, S., Tomiyasu, I. & Yabuuchi, E. ( 1983; ). Separation and analysis of free ceramides containing 2-hydroxy fatty acids in Sphingobacterium species. FEMS Microbiol Lett 20, 449–453.[CrossRef]
    [Google Scholar]
  58. Yonehara, S., Ishii, A. & Yonehara, M. ( 1989; ). A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169, 1747–1756.[CrossRef]
    [Google Scholar]
  59. Zhang, Y. H., Takahashi, K., Jiang, G. Z., Kawai, M., Fukada, M. & Yokochi, T. ( 1993; ). In vivo induction of apoptosis (programmed cell death) in mouse thymus by administration of lipopolysaccharide. Infect Immun 61, 5044–5048.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25922-0
Loading
/content/journal/micro/10.1099/mic.0.25922-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error