1887

Abstract

sp. DSS73 was isolated from the rhizoplane of sugar beet seedlings. This strain exhibits antagonism towards the root-pathogenic microfungi and . Production of the cyclic lipopeptide amphisin in combination with expression of flagella enables the growing bacterial culture to move readily over the surface of laboratory media. Amphisin is a new member of a group of dual-functioning compounds such as tensin, viscosin and viscosinamid that display both biosurfactant and antifungal properties. The ability of DSS73 to efficiently contain root-pathogenic microfungi is shown to arise from amphisin-dependent surface translocation and growth by which the bacterium can lay siege to the fungi. The synergistic effects of surface motility and synthesis of a battery of antifungal compounds efficiently contain and terminate growth of the microfungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25859-0
2003-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_5.html?itemId=/content/journal/micro/10.1099/mic.0.25859-0&mimeType=html&fmt=ahah

References

  1. Allison, C. & Hughes, C. ( 1991; ). Bacterial swarming. An example of prokaryotic differentiation and multicellular behavior. Sci Prog 75, 403–422.
    [Google Scholar]
  2. Bees, M. A., Andresen, P., Mosekilde, E. & Givskov, M. ( 2000; ). The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens. J Math Biol 40, 27–63.[CrossRef]
    [Google Scholar]
  3. Chancey, S. T., Wood, D. W. & Pierson, L. S., III ( 1999; ). Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65, 2294–2299.
    [Google Scholar]
  4. Clark, D. J. & Maaløe, O. ( 1967; ). DNA replication and the division cycle in Escherichia coli. J Mol Biol 23, 99–112.[CrossRef]
    [Google Scholar]
  5. Corbell, N. A. & Loper, J. E. ( 1995; ). A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 177, 6230–6236.
    [Google Scholar]
  6. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  7. Dowling, D. N. & O'Gara, F. ( 1994; ). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12, 133–141.[CrossRef]
    [Google Scholar]
  8. Eberl, L., Winson, M. K., Sternberg, C. & 7 other authors ( 1996; ). Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens. Mol Microbiol 20, 127–136.[CrossRef]
    [Google Scholar]
  9. Eberl, L., Schultze, R., Ammedola, A., Geisenberger, O., Erhart, R., Sternberg, C., Molin, S. & Aman, R. ( 1997; ). Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 149, 77–83.[CrossRef]
    [Google Scholar]
  10. Eberl, L., Molin, S. & Givskov, M. ( 1999; ). Surface motility of Serratia liquefaciens MG1. J Bacteriol 181, 1703–1712.
    [Google Scholar]
  11. Gaffney, T. D., Lam, S. T., Ligon, J. & 9 other authors ( 1994; ). Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant–Microbe Interact 7, 455–463.[CrossRef]
    [Google Scholar]
  12. Givskov, M., Olsen, L. & Molin, S. ( 1988; ). Cloning and expression in Escherichia coli of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J Bacteriol 170, 5855–5862.
    [Google Scholar]
  13. Harshey, R. M. ( 1994; ). Bees aren't the only ones: swarming in gram negative bacteria. Mol Microbiol 13, 389–394.[CrossRef]
    [Google Scholar]
  14. Høiby, N., Johansen, H. K., Moser, C., Song, Z., Ciofu, O. & Kharazmi, A. ( 2001; ). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microb Infect 3, 23–35.[CrossRef]
    [Google Scholar]
  15. Hrabak, E. M. & Willis, D. K. ( 1992; ). The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 174, 3011–3020.
    [Google Scholar]
  16. Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., Molin, S. & Eberl, L. ( 2001; ). The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147, 2517–2528.
    [Google Scholar]
  17. Kinscherf, T. G. & Willis, D. K. ( 1999; ). Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J Bacteriol 181, 4133–4136.
    [Google Scholar]
  18. Koch, B., Nielsen, T. H., Sørensen, D., Andersen, J. B., Christophersen, C., Molin, S., Givskov, M., Sørensen, J. & Nybroe, O. ( 2002; ). Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudates via the Gac two-component regulatory system. Appl Environ Microbiol 68, 4509–4516.[CrossRef]
    [Google Scholar]
  19. Kochi, M., Weiss, D. W., Pugh, L. H. & Groupé, V. ( 1951; ). Viscosin, a new antibiotic. Bacteriol Proc 1, 29–30.
    [Google Scholar]
  20. Köhler, T., Curty, L. K., Barja, F., van Delden, C. & Pechère, J. ( 2000; ). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182, 5990–5996.[CrossRef]
    [Google Scholar]
  21. Laville, J., Voisard, C., Keel, C., Maurhofer, M., Dèfago, G. & Hass, D. ( 1992; ). Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A 89, 1562–1566.[CrossRef]
    [Google Scholar]
  22. Lindum, P. W., Anthoni, U., Christophersen, C., Eberl, L., Molin, S. & Givskov, M. ( 1998; ). N-Acyl-l-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180, 6384–6388.
    [Google Scholar]
  23. Mallory, L. M., Yuk, C. S., Liang, L. N. & Alexander, M. ( 1983; ). Alternative prey: a mechanism for elimination of bacteria by protozoa. Appl Environ Microbiol 46, 1073–1079.
    [Google Scholar]
  24. Matsuyama, T., Kaneda, K., Ishizuka, I., Toida, T. & Yano, I. ( 1990; ). Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J Bacteriol 172, 3015–3022.
    [Google Scholar]
  25. Matsuyama, T., Kaneda, K., Nakagawa, Y., Isa, K., Hara-Hotta, H. & Yano, I. ( 1992; ). A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174, 1769–1776.
    [Google Scholar]
  26. McCarter, L. & Silverman, M. ( 1990; ). Surface-induced swarmer cell-differentiation of Vibrio parahaemolyticus. Mol Microbiol 4, 1057–1062.[CrossRef]
    [Google Scholar]
  27. Nielsen, M. N., Sørensen, J., Fels, J. & Pedersen, H. C. ( 1998; ). Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64, 3563–3569.
    [Google Scholar]
  28. Nielsen, T. H., Christophersen, C., Anthoni, U. & Sørensen, J. ( 1999; ). Viscosinamid, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86, 80–90.
    [Google Scholar]
  29. Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U. & Sørensen, J. ( 2000; ). Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89, 992–1001.[CrossRef]
    [Google Scholar]
  30. Nielsen, T. H., Sørensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M. & Sørensen, J. ( 2002; ). Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68, 3416–3423.[CrossRef]
    [Google Scholar]
  31. Pfender, W. F., Kraus, J. & Loper, J. E. ( 1994; ). A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83, 1223–1228.
    [Google Scholar]
  32. Pierson, L. S., III, Wood, D. W., Pierson, E. A. & Chancey, S. T. ( 1998; ). N-Acyl-homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur J Plant Pathol 104, 1–9.[CrossRef]
    [Google Scholar]
  33. Rashid, M. H. & Kornberg, A. ( 2000; ). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97, 4885–4890.[CrossRef]
    [Google Scholar]
  34. Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M. & Loper, J. E. ( 1995; ). The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92, 12255–12259.[CrossRef]
    [Google Scholar]
  35. Schmidli-Sacherer, P., Keel, C. & Dèfago, G. ( 1997; ). The global regulator GacA of Pseudomonas fluorescens CHA0 is required for suppression of root diseases in dicotyledons but not in Graminae. Plant Pathol 46, 80–90.[CrossRef]
    [Google Scholar]
  36. Schnider, U., Keel, C., Blummer, C., Troxler, J., Défago, G. & Haas, D. ( 1995; ). Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177, 5387–5392.
    [Google Scholar]
  37. Shanahan, P., O'Sullivan, D. J., Simpson, P., Glennon, J. D. & O'Gara, F. ( 1992; ). Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58, 353–358.
    [Google Scholar]
  38. Sørensen, D., Nielsen, T. H., Christophersen, C., Sørensen, J. & Gajhede, M. ( 2001; ). Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr 57, 1123–1124.
    [Google Scholar]
  39. Staskawicz, B. J., Dahlbeck, D., Keen, N. T. & Napoli, C. ( 1987; ). Molecular characterization of cloned virulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169, 5789–5794.
    [Google Scholar]
  40. Thomashow, L. S. & Weller, D. M. ( 1988; ). Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170, 3499–3508.
    [Google Scholar]
  41. Thrane, C., Nielsen, T. H., Neiendam, M., Sørensen, J. & Olsson, S. ( 2000; ). Viscosinamid-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33, 139–146.[CrossRef]
    [Google Scholar]
  42. Turnbull, G. A., Morgan, J. A., Whipps, J. M. & Saunders, J. R. ( 2001; ). The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36, 21–31.[CrossRef]
    [Google Scholar]
  43. Voisard, C., Keel, C., Haas, D. & Dèfago, G. ( 1989; ). Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8, 351–358.
    [Google Scholar]
  44. Wolffhechel, H. & Jensen, D. F. ( 1992; ). Use of Trichoderma harzianum and Gliocladium virens for the biological control of post-emergence damping-off and root rot of cucumbers caused by Pythium ultimum. J Phytopathol 136, 221–230.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25859-0
Loading
/content/journal/micro/10.1099/mic.0.25859-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error