1887

Abstract

sp. DSS73 was isolated from the rhizoplane of sugar beet seedlings. This strain exhibits antagonism towards the root-pathogenic microfungi and . Production of the cyclic lipopeptide amphisin in combination with expression of flagella enables the growing bacterial culture to move readily over the surface of laboratory media. Amphisin is a new member of a group of dual-functioning compounds such as tensin, viscosin and viscosinamid that display both biosurfactant and antifungal properties. The ability of DSS73 to efficiently contain root-pathogenic microfungi is shown to arise from amphisin-dependent surface translocation and growth by which the bacterium can lay siege to the fungi. The synergistic effects of surface motility and synthesis of a battery of antifungal compounds efficiently contain and terminate growth of the microfungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25859-0
2003-01-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_5.html?itemId=/content/journal/micro/10.1099/mic.0.25859-0&mimeType=html&fmt=ahah

References

  1. Allison C., Hughes C. 1991; Bacterial swarming. An example of prokaryotic differentiation and multicellular behavior. Sci Prog75:403–422
    [Google Scholar]
  2. Bees M. A, Andresen P, Mosekilde E., Givskov M. 2000; The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens. J Math Biol40:27–63
    [Google Scholar]
  3. Chancey S. T, Wood D. W., Pierson L. S. III. 1999; Two-component transcriptional regulation of N -acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol65:2294–2299
    [Google Scholar]
  4. Clark D. J., Maaløe O. 1967; DNA replication and the division cycle in Escherichia coli. J Mol Biol23:99–112
    [Google Scholar]
  5. Corbell N. A., Loper J. E. 1995; A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol177:6230–6236
    [Google Scholar]
  6. Costerton J. W, Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322
    [Google Scholar]
  7. Dowling D. N., O'Gara F. 1994; Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol12:133–141
    [Google Scholar]
  8. Eberl L, Winson M. K, Sternberg C.. 7 other authors 1996; Involvement of N -acyl-l-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens. Mol Microbiol20:127–136
    [Google Scholar]
  9. Eberl L, Schultze R, Ammedola A, Geisenberger O, Erhart R, Sternberg C, Molin S., Aman R. 1997; Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett149:77–83
    [Google Scholar]
  10. Eberl L, Molin S., Givskov M. 1999; Surface motility of Serratia liquefaciens MG1. J Bacteriol181:1703–1712
    [Google Scholar]
  11. Gaffney T. D, Lam S. T, Ligon J.. 9 other authors 1994; Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant–Microbe Interact7:455–463
    [Google Scholar]
  12. Givskov M, Olsen L., Molin S. 1988; Cloning and expression in Escherichia coli of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J Bacteriol 170:5855–5862
    [Google Scholar]
  13. Harshey R. M. 1994; Bees aren't the only ones: swarming in gram negative bacteria. Mol Microbiol13:389–394
    [Google Scholar]
  14. Høiby N, Johansen H. K, Moser C, Song Z, Ciofu O., Kharazmi A. 2001; Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microb Infect3:23–35
    [Google Scholar]
  15. Hrabak E. M., Willis D. K. 1992; The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol174:3011–3020
    [Google Scholar]
  16. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S., Eberl L. 2001; The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology147:2517–2528
    [Google Scholar]
  17. Kinscherf T. G., Willis D. K. 1999; Swarming by Pseudomonas syringae B728a requires gacS ( lemA ) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J Bacteriol181:4133–4136
    [Google Scholar]
  18. Koch B, Nielsen T. H, Sørensen D, Andersen J. B, Christophersen C, Molin S, Givskov M, Sørensen J., Nybroe O. 2002; Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudates via the Gac two-component regulatory system. Appl Environ Microbiol68:4509–4516
    [Google Scholar]
  19. Kochi M, Weiss D. W, Pugh L. H., Groupé V. 1951; Viscosin, a new antibiotic. Bacteriol Proc1:29–30
    [Google Scholar]
  20. Köhler T, Curty L. K, Barja F, van Delden C., Pechère J. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996
    [Google Scholar]
  21. Laville J, Voisard C, Keel C, Maurhofer M, Dèfago G., Hass D. 1992; Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A89:1562–1566
    [Google Scholar]
  22. Lindum P. W, Anthoni U, Christophersen C, Eberl L, Molin S., Givskov M. 1998; N -Acyl-l-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol180:6384–6388
    [Google Scholar]
  23. Mallory L. M, Yuk C. S, Liang L. N., Alexander M. 1983; Alternative prey: a mechanism for elimination of bacteria by protozoa. Appl Environ Microbiol46:1073–1079
    [Google Scholar]
  24. Matsuyama T, Kaneda K, Ishizuka I, Toida T., Yano I. 1990; Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J Bacteriol172:3015–3022
    [Google Scholar]
  25. Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H., Yano I. 1992; A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol174:1769–1776
    [Google Scholar]
  26. McCarter L., Silverman M. 1990; Surface-induced swarmer cell-differentiation of Vibrio parahaemolyticus. Mol Microbiol4:1057–1062
    [Google Scholar]
  27. Nielsen M. N, Sørensen J, Fels J., Pedersen H. C. 1998; Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol64:3563–3569
    [Google Scholar]
  28. Nielsen T. H, Christophersen C, Anthoni U., Sørensen J. 1999; Viscosinamid, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol86:80–90
    [Google Scholar]
  29. Nielsen T. H, Thrane C, Christophersen C, Anthoni U., Sørensen J. 2000; Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol89:992–1001
    [Google Scholar]
  30. Nielsen T. H, Sørensen D, Tobiasen C, Andersen J. B, Christophersen C, Givskov M., Sørensen J. 2002; Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol68:3416–3423
    [Google Scholar]
  31. Pfender W. F, Kraus J., Loper J. E. 1994; A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology83:1223–1228
    [Google Scholar]
  32. Pierson L. S. III, Wood D. W, Pierson E. A., Chancey S. T. 1998; N -Acyl-homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur J Plant Pathol104:1–9
    [Google Scholar]
  33. Rashid M. H., Kornberg A. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A97:4885–4890
    [Google Scholar]
  34. Sarniguet A, Kraus J, Henkels M. D, Muehlchen A. M., Loper J. E. 1995; The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A92:12255–12259
    [Google Scholar]
  35. Schmidli-Sacherer P, Keel C., Dèfago G. 1997; The global regulator GacA of Pseudomonas fluorescens CHA0 is required for suppression of root diseases in dicotyledons but not in Graminae. Plant Pathol46:80–90
    [Google Scholar]
  36. Schnider U, Keel C, Blummer C, Troxler J, Défago G., Haas D. 1995; Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol177:5387–5392
    [Google Scholar]
  37. Shanahan P, O'Sullivan D. J, Simpson P, Glennon J. D., O'Gara F. 1992; Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol58:353–358
    [Google Scholar]
  38. Sørensen D, Nielsen T. H, Christophersen C, Sørensen J., Gajhede M. 2001; Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr57:1123–1124
    [Google Scholar]
  39. Staskawicz B. J, Dahlbeck D, Keen N. T., Napoli C. 1987; Molecular characterization of cloned virulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol169:5789–5794
    [Google Scholar]
  40. Thomashow L. S., Weller D. M. 1988; Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol170:3499–3508
    [Google Scholar]
  41. Thrane C, Nielsen T. H, Neiendam M, Sørensen J., Olsson S. 2000; Viscosinamid-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol33:139–146
    [Google Scholar]
  42. Turnbull G. A, Morgan J. A, Whipps J. M., Saunders J. R. 2001; The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and the attachment and colonization of wheat roots. FEMS Microbiol Ecol36:21–31
    [Google Scholar]
  43. Voisard C, Keel C, Haas D., Dèfago G. 1989; Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J8:351–358
    [Google Scholar]
  44. Wolffhechel H., Jensen D. F. 1992; Use of Trichoderma harzianum and Gliocladium virens for the biological control of post-emergence damping-off and root rot of cucumbers caused by Pythium ultimum. J Phytopathol136:221–230
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25859-0
Loading
/content/journal/micro/10.1099/mic.0.25859-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error