1887

Abstract

Production of the signalling molecule (autoinducer-2) synthesized by LuxS has been proposed to be pivotal to a universal mechanism of inter-species bacterial cell–cell communication (quorum sensing); however recently the function of LuxS has been noted to be integral to central metabolism since it contributes to the activated methyl cycle. This paper shows that when LuxS is overproduced in , it forms cross-linkable multimers. These multimers persist at comparable levels after 24 h of growth if glucose is omitted from the growth medium; however, the levels of extracellular autoinducer-2 decline (Glucose Retention of AI-2 Levels: GRAIL). Glycerol, maltose, galactose, ribose and -arabinose could substitute for glucose, but lactose, -arabinose, acetate, citrate and pyruvate could not. Mutations in (i) metabolic pathways (glycolytic enzymes , , ; galactose epimerase; the Pta–AckA pathway), (ii) sugar transport ( components, operon, , ), and (iii) regulators involved in conventional catabolic repression (, ), cAMP-independent catabolite repression (, , ,) the stringent response (, ) and the global carbon storage regulator () did not prevent GRAIL. Although the basis of GRAIL remains uncertain, it is clear that the mechanism is distinct from conventional catabolite repression. Moreover, GRAIL is not due to inactivation of the enzymic activity of LuxS, since in , LuxS contained within stationary-phase cells grown in the absence of glucose maintains its activity .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25853-0
2003-03-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149715.html?itemId=/content/journal/micro/10.1099/mic.0.25853-0&mimeType=html&fmt=ahah

References

  1. Atherton J. C.. 1997; Molecular methods for detecting ulcerogenic strains of H. pylori . In Methods in Molecular Medicine: Helicobacter pylori Protocols pp 133–145 Edited by Clayton C. L., Mobley H. L. T.. Totowa, NJ: Humana Press;
    [Google Scholar]
  2. Bassler B. L.. 1999; How bacteria talk to each other: regulation of gene expression by quorum sensing. Cur Opin Microbiol2:582–587
    [Google Scholar]
  3. Bassler B. L.. 2002; Small talk: cell-cell communication in bacteria. Cell109:421–424
    [Google Scholar]
  4. Bassler B. L., Wright M., Silverman M. R.. 1994; Multiple signalling systems controlling expression of luminescence in Vibrio harveyi : sequence and function of genes encoding a second sensory pathway. Mol Microbiol13:273–286
    [Google Scholar]
  5. Bassler B. L., Greenberg E. P., Stevens A. M.. 1997; Cross-species induction of luminescence in the quorum sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045
    [Google Scholar]
  6. Beeston A. L., Surette M. G.. 2002; pfs -dependent regulation of autoinducer 2 production in Salmonella enterica serovar typhimurium. J. Bacteriol184:3450–3456
    [Google Scholar]
  7. Bell A. W., Buckel S. D., Groarke J. M., Hope J. N., Kingsley D. H., Hermodson X.. 1986; The nucleotide sequences of rbsD , rbsA , and rbsC genes of Escherichia coli K 12. J Biol Chem261:7652–7658
    [Google Scholar]
  8. Bell A., Gaston K., Williams R., Chapman K., Kolb A., Buc H., Minchin S., Williams J., Busby S.. 1990; Mutations that alter the ability of Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids Res18:7243–7250
    [Google Scholar]
  9. Berman M., Lin E. C. C.. 1971; Glycerol-specific revertants of a phophoenolpyruvate phosphotransferase mutant: suppression by the desensitization of glycerol kinase to feedback inhibition. J Bacteriol105:113–120
    [Google Scholar]
  10. Bitner R. M., Kuempel P. L.. 1981; P1 transduction map spanning the replication terminus of Escherichia coli K12. Mol Gen Genet184:208–212
    [Google Scholar]
  11. Blaser M. J., Perez-perez G. I., Kleanthous H., Cover T. L., Peek R. M., Chyou P. H., Stemmermann G. N., Nomura A.. 1995; Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res55:2111–2115
    [Google Scholar]
  12. Blattner F. R., Plunkett G. 3rd, Bloch C. A.. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1474
    [Google Scholar]
  13. Burgess N. A., Kirke D., Williams P., Winzer K., Hardie K. R., Meyer N. L., Aduse-Opoku J., Curtis M. A., Cámara M.. 2002; LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology148:763–772
    [Google Scholar]
  14. Busby S., Kotlaz D., Buc H.. 1983; Deletion mutagenesis of the Escherichia coli galactose operon promoter region. J Mol Biol167:259–274
    [Google Scholar]
  15. Casadaban M. J.. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol104:541–555
    [Google Scholar]
  16. Cashel M., Gentry D. R., Hernandez V. J., Vinella D.. others 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn.vol. 1 pp 1458–1463 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Chang D.-E., Shin S., Rhee J.-S., Pan J.-G.. 1999; Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol181:6656–6663
    [Google Scholar]
  18. Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L., Hughson F. M.. 2002; Structural identification of a bacterial quorum-sensing signal containing boron. Nature415:545–549
    [Google Scholar]
  19. Chung W. O., Park Y., Lamont R. J., McNab R., Barbieri B., Demuth D. R.. 2001; Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol183:3903–3909
    [Google Scholar]
  20. Coulthurst S. J., Whitehead N. A., Welch M., Salmond G. P. C.. 2002; Can boron get bacteria talking?. Trends Biochem Sci27:217–219
    [Google Scholar]
  21. Cover T. L., Blaser M. J.. 1996; Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med41:85–117
    [Google Scholar]
  22. Crasnier-Medansky M., Park M. C., Studley W. K., Saier M. H. Jr. 1997; Cra-mediated regulation of Escherichia coli adenylate cyclase. Microbiology143:785–792
    [Google Scholar]
  23. Day W. A., Maurelli A. T.. 2001; Shigella flexneri LuxS quorum sensing system modulates virB expression but is not essential for virulence. Infect Immun69:15–23
    [Google Scholar]
  24. DeLisa M. P., Valdes J. J., Bentley W. E.. 2001; Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. J Bacteriol183:2918–2928
    [Google Scholar]
  25. Duerre J. A., Miller C. H.. 1966; Cleavage of S -ribosyl-l-homocysteine by extracts from Escherichia coli . J Bacteriol91:1210–1217
    [Google Scholar]
  26. Duerre J. A., Baker D. J., Salisbury L.. 1971; Structure elucidation of a carbohydrate derived from S -ribosylhomocysteine by enzymatic cleavage. Fed Proc30:88
    [Google Scholar]
  27. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A.. 1997; The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol13:457–512
    [Google Scholar]
  28. Fong K. P., Chung W. O., Lamont R. J., Demuth D. R.. 2001; Intra-and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun69:7625–7634
    [Google Scholar]
  29. Forsyth M. H., Cover T. L.. 2000; Intercellular communication in Helicobacter pylori : luxS is essential for the production of an extracellular signaling molecule. Infect Immun68:3193–3199
    [Google Scholar]
  30. Fox C. F., Wilson G.. 1968; The role of a phophoenolpyruvate-dependent kinase system in β -glucoside catabolism in Escherichia coli . Proc Natl Acad Sci U S A59:988–995
    [Google Scholar]
  31. Fraenkel D. G.. others 1996; Glycolysis. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn.vol. 1 pp 189–195 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Greenberg P., Hastings J. W., Ulitzur S.. 1979; Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch Microbiol120:87–91
    [Google Scholar]
  33. Guyer M. S., Reed R. R., Steitz J. A., Low K. B.. 1981; Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harbor Symp Quant Biol45:135–140
    [Google Scholar]
  34. Hammer-Jespersen K., Nygaard P.. 1976; Multiple regulation of nucleoside catabolizing enzymes in Escherichia coli : effects of 3 : 5′ cyclic AMP and CRP protein. Mol Gen Genet148:49–55
    [Google Scholar]
  35. Hammer-Jespersen K., Munch-Petersen A.. 1975; Multiple regulation of nucleoside catabolizing enzymes: regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet137:327–335
    [Google Scholar]
  36. Hardie K. R., Lory S., Pugsley A. P.. 1996; Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J15:978–988
    [Google Scholar]
  37. Harlow E., Lane D.. 1988; Antibodies: a Laboratory Manual pp 139–243 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Hilgers M. T., Ludwig M. L.. 2001; Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site . Proc Natl Acad Sci U S A98:11169–11174
    [Google Scholar]
  39. Hoffmeyer J., Neuhard J.. 1971; Metabolism of exogenous purine bases and nucleosides by Salmonella typhimurium . J Bacteriol106:14–24
    [Google Scholar]
  40. Iida A., Harayama S., Lino T., Hazelbauer G. L.. 1984; Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. J Bacteriol158:674–682
    [Google Scholar]
  41. Jacobs W. R., Barrett J. F., Clarkcurtiss J. E., Curtiss R.. 1986; In vivo repackaging of recombinant cosmid molecules for analyses of Salmonella typhimurium , Streptococcus mutans , and mycobacterial genomic libraries. Infect Immun52:101–109
    [Google Scholar]
  42. Joyce E. A., Bassler B. L., Wright A.. 2000; Evidence for a signaling system in Helicobacter pylori : detection of a luxS -encoded autoinducer. J Bacteriol182:3638–3643
    [Google Scholar]
  43. Kirkpatrick C., Maurer L. M., Oyelakin N. E., Yoncheva Y. N., Maurer R., Slonczewski J. L.. 2001; Acetate and formate stress: opposite responses in the proteome of Escherichia coli . J Bacteriol183:6466–6477
    [Google Scholar]
  44. Kolb A., Busby S., Buc H., Garges S., Adhya S.. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem62:749–795
    [Google Scholar]
  45. Lederberg J., Cavalli L. L., Lederberg E. M.. 1952; Sex compatibility in Escherichia coli . Genetics37:720–730
    [Google Scholar]
  46. Lewis H. A., Furlong E. B., Laubert B.. 9 other authors 2001; A structural genomics approach to study of quorum sensing: crystal structures of three LuxS orthologs. Structure9:527–537
    [Google Scholar]
  47. Lin M. Y., Gui G., Wei B., Preston J. F. III, Oakford L., Yuksel U., Geidroc D. P., Romeo T.. 1997; The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem272:17502–17510
    [Google Scholar]
  48. Lopilato J. E., Garwin J. L., Emr S. D., Silhavy T. J., Beckwith J. R.. 1984; d-Ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. J Bacteriol158:665–673
    [Google Scholar]
  49. Luria S. E., Adams J. N., Ting R. C.. 1960; Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology12:348–390
    [Google Scholar]
  50. Lyon W. R., Madden J. C., Levin J. C., Stein J. L., Caparon M. G.. 2001; Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes . Mol Microbiol42:145–157
    [Google Scholar]
  51. Mauzy C. A., Hermodson M. A.. 1992; Structural and functional analysis of the repressor, RbsR, of the ribose operon of Escherichia coli . Protein Sci1:831–842
    [Google Scholar]
  52. McDowell P., Affas Z., Reynolds C.. 9 other authors 2001; Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus . Mol Microbiol41:503–512
    [Google Scholar]
  53. Miller C. H., Duerre J. A.. 1968; S -Ribosylhomocysteine cleavage enzyme from Escherichia coli . J Biol Chem243:92–97
    [Google Scholar]
  54. Miller M. B., Skorupski K., Lenz D. H., Taylor R. K., Bassler B. L.. 2002; Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae . Cell110:303–314
    [Google Scholar]
  55. Mizuuchi K., Fukasawa T.. 1969; Chromosome mobilization in rec -merodiploids of Escherichia coli K12 following infection with bacteriophage lambda. Virology39:467–481
    [Google Scholar]
  56. Mobley H. L.. 1996; Defining Helicobacter pylori as a pathogen: strain heterogenicity and virulence. Am J Med100:25–115
    [Google Scholar]
  57. Nealson K. H., Markovitz A.. 1970; Mutant analysis and enzyme subunit complementation in bacterial bioluminescence in Photobacterium fischeri. J Bacteriol104:300–312
    [Google Scholar]
  58. Novick R. P., Muir W. M.. 1999; Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Cur Opin Microbiol2:40–45
    [Google Scholar]
  59. Park Y., Cho Y.-J., Ahn T., Park C.. 1999; Molecular interactions in ribose transport: the binding protein module symmetrically associates with the homodimeric membrane transporter. EMBO J18:4149–4156
    [Google Scholar]
  60. Postma P. W., Lengeler J. W., Jacobson G. R.. others 1996; Phosphoenolpyruvate : carbohydrate phosphotransferase systems. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn.vol. 1 pp 1149–1167 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  61. Pruss B. M., Nelms J. M., Park C., Wolfe A. J.. 1994; Mutations in NADH : ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol176:2143–2150
    [Google Scholar]
  62. Romeo T., Gong M., Liu M. Y., Brun-Zinkernagel A.-M.. 1993; Identification and molecular characterization of csrA , a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size and surface properties. J Bacteriol175:4744–4755
    [Google Scholar]
  63. Sabourin D., Beckwith J.. 1975; Deletion of the Escherichia coli crp gene. J Bacteriol122:338–340
    [Google Scholar]
  64. Saier M. H., Ramseier T. M., Reizer J.. 1996; Regulation of carbon utilization. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn.vol. 1 pp 1325–1341 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  65. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  66. Schauder S., Shokat K., Surette M. G., Bassler B. L.. 2001; The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum sensing signal molecule. Mol Microbiol41:463–476
    [Google Scholar]
  67. Schneider R., Lockatell C. V., Johnson D., Belas R.. 2002; Detection and mutation of a luxS -encoded autoinducer in Proteus mirabilis . Microbiology148:773–782
    [Google Scholar]
  68. Shah S., Peterkofsy A.. 1991; Characterization and generation of Escherichia coli adenylate cyclase deletion mutants. J Bacteriol173:3238–3242
    [Google Scholar]
  69. Shapiro J. A.. 1966; Chromosomal location of the gene determinining uridine diphosphoglucose formation in Eschericha coli K-12. J Bacteriol92:518–520
    [Google Scholar]
  70. Singer M., Baker T. A., Schnitzler G.. 7 other authors 1989; A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli . Microbiol Rev53:1–24
    [Google Scholar]
  71. Sperandio V., Mellies J. L., Nguyen W., Shin S., Kaper J. B.. 1999; Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli . Proc Natl Acad Sci U S A96:15196–15201
    [Google Scholar]
  72. Sunshine M. G., Kelly B.. 1971; Extent of host deletions associated with bacteriophage P2-mediated eduction. J Bacteriol108:695–704
    [Google Scholar]
  73. Surette M. G., Bassler B. L.. 1998; Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A95:7046–7050
    [Google Scholar]
  74. Surette M. G., Bassler B. L.. 1999; Regulation of autoinducer production in Salmonella typhimurium. Mol Microbiol31:585–595
    [Google Scholar]
  75. Surette M. G., Miller M. B., Bassler B. L.. 1999; Quorum sensing in Escherichia coli , Salmonella typhimurium , and Vibrio harveyi : a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A96:1639–1644
    [Google Scholar]
  76. Swift S., Downie J. A., Whitehead N. A., Barnard A. M., Salmond G. P., Williams P.. 2001; Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol45:199–270
    [Google Scholar]
  77. Taga M. E., Semmelhack J. L., Bassler B. L.. 2001; The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium . Mol Microbiol42:777–793
    [Google Scholar]
  78. Tatum E. L.. 1945; X-ray induced mutant strains of Escherichia coli . Proc Natl Acad Sci U S A31:215–219
    [Google Scholar]
  79. Theze J., Margarita D., Cohen G. N., Borne F., Patte J. C.. 1974; Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12. J Bacteriol117:133–143
    [Google Scholar]
  80. Thomson J., Gerstenberger P. D., Goldberg D. E., Gociar E., Orozco de Silva A., Fraenkel D. G.. 1979; ColE1 hybrid plasmids for Escherichia coli genes of glycolysis and the hexose monophosphate shunt. J Bacteriol137:502–506
    [Google Scholar]
  81. Winans S. C.. 2002; Bacterial Esperanto. Nat Struct Biol9:83–84
    [Google Scholar]
  82. Winzer K., Williams P.. 2001; Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol291:131–143
    [Google Scholar]
  83. Winzer K., Hardie K. R., Burgess N.. 8 other authors 2002a; LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3( 2H) -furanone. Microbiology148:909–922
    [Google Scholar]
  84. Winzer K., Hardie K. R., Williams P.. 2002b; Bacterial cell-to-cell communication: sorry, can't talk now – gone to lunch!. Cur Opin Microbiol5:216–222
    [Google Scholar]
  85. Winzer K., Sun Y.-H., Green A., Delory M., Blackley D., Hardie K. R., Baldwin T. J., Tang C. M.. 2002c; The role of Neisseria meningitidis luxS in cell-to-cell signaling and bacteremic infection. Infect Immun70:2245–2248
    [Google Scholar]
  86. Withers H., Swift S., Williams P.. 2001; Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Cur Opin Microbiol4:186–193
    [Google Scholar]
  87. Wray W., Boulikas T., Wray V. P., Hancock R.. 1981; Silver staining of proteins in polyacrylamide gels. Anal Biochem118:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25853-0
Loading
/content/journal/micro/10.1099/mic.0.25853-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error