1887

Abstract

Infection with bacterial species belonging to the complex contribute significantly to morbidity and mortality in persons with cystic fibrosis (CF). The majority of isolates recovered from CF patients belong to genomovar III and several distinct ‘epidemic’ strains have been described. This study examined the population structure of genomovar III by using multilocus restriction typing, indexing allelic variation at five chromosomal genes by restriction analysis of PCR-amplified genes. A collection of 375 isolates, recovered from CF and non-CF patients and natural environments in North America, Europe and Australia, was examined. Among these isolates 144 different restriction types were found. Overall, the population is at linkage disequilibrium, indicating that it has a clonal structure. The majority (86·7 %) of restriction types grouped into three major clonal complexes, comprising the epidemic ET12, PHDC and Midwest clonal lineages. The analysis indicates that these complexes are geographically widespread and demonstrate varying degrees of genetic recombination. These differences in population structure among major clonal complexes within the same species are likely related to differences in evolutionary history and ecology. The observation that genetic recombination is frequent within some genomovar III populations has important implications for the biotechnological use of complex species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25850-0
2003-01-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_9.html?itemId=/content/journal/micro/10.1099/mic.0.25850-0&mimeType=html&fmt=ahah

References

  1. Aris R. M, Routh J. C, LiPuma J. J, Heath D. G., Gilligan P. H. 2001; Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex: survival linked to genomovar type. Am J Resp Crit Care Med164:2102–2106
    [Google Scholar]
  2. Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S., Vandamme P. 2001; Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl Environ Microbiol67:982–985
    [Google Scholar]
  3. Bandelt H. J., Dress A. W. 1992; Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol1:242–252
    [Google Scholar]
  4. Bowler L. D, Zhang Q. Y, Riou J. Y., Spratt B. G. 1994; Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis : natural events and laboratory simulation. J Bacteriol176:333–337
    [Google Scholar]
  5. Chen J. S, Witzmann K. A, Spilker T, Fink R. J., LiPuma J. J. 2001; Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J Pediatr139:643–649
    [Google Scholar]
  6. Clode F. E, Kaufmann M. E, Malnick H., Pitt T. L. 2000; Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J Clin Microbiol38:1763–1766
    [Google Scholar]
  7. Coenye T., LiPuma J. J. 2002; Multilocus restriction typing, a novel tool for studying global epidemiology of Burkholderia cepacia complex infection in cystic fibrosis. J Infect Dis185:1454–1462
    [Google Scholar]
  8. Coenye T, Vandamme P, Govan J. R. W., LiPuma J. J. 2001; Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol39:3427–3436
    [Google Scholar]
  9. Day N. P. J, Moore C. E, Enright M. C, Berendt A. R, Maynard Smith J, Murphy M. F, Peacock S. J, Spratt B. G., Feil E. J. 2001; A link between virulence and ecological abundance in natural populations of Staphylococcus aureus. Science292:114–116
    [Google Scholar]
  10. DeSoyza A, McDowell A, Archer L, Dark J. H, Elborn S. J, Mahenthiralingam E, Gould K., Corris P. A. 2001; Burkholderia cepacia complex genomovars and pulmonary transplantation outcomes in patients with cystic fibrosis. Lancet358:1780–1781
    [Google Scholar]
  11. Dopazo J, Dress A., von Haeseler A. 1993; Split decomposition: a technique to analyze viral evolution. Proc Natl Acad Sci U S A90:10320–10324
    [Google Scholar]
  12. Dowson C. G, Hutchison A, Woodford N, Johnson A. P, George R. C., Spratt B. G. 1990; Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc Natl Acad Sci U S A87:5858–5862
    [Google Scholar]
  13. Feil E. J., Spratt B. G. 2001; Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol55:561–590
    [Google Scholar]
  14. Fiore A, Laevens S, Bevivino A, Dalmastri C, Tabacchioni S, Vandamme P., Chiarini L. 2001; Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ Microbiol3:137–143
    [Google Scholar]
  15. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev60:539–574
    [Google Scholar]
  16. Govan J. R. W, Balandreau J., Vandamme P. 2000; Burkholderia cepacia – friend and foe. ASM News66:124–125
    [Google Scholar]
  17. Haubold B., Hudson R. R. 2000; LIAN 3.0: detecting linkage disequilibrium in multilocus data. Bioinformatics16:847–848
    [Google Scholar]
  18. Haubold B, Travisano M, Rainey P. B., Hudson R. R. 1998; Detecting linkage disequilibrium in bacterial populations. Genetics150:1341–1348
    [Google Scholar]
  19. Henry D. A, Mahenthiralingham E, Vandamme P, Coenye T., Speert D. P. 2001; Biochemical and molecular methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol39:1073–1078
    [Google Scholar]
  20. Holmes A, Govan J., Goldstein R. 1998; Agricultural use of Burkholderia ( Pseudomonas ) cepacia : a threat to human health?. Emerg Infect Dis4:221–227
    [Google Scholar]
  21. Huson D. H. 1998; SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics14:68–73
    [Google Scholar]
  22. Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P., Levison H. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr104:206–210
    [Google Scholar]
  23. Johnson W. M, Tyler S. D., Rozee K. R. 1994; Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol32:924–930
    [Google Scholar]
  24. Johnston R. B. 2001; Clinical aspects of chronic granulomatuous disease. Curr Opin Hematol8:17–22
    [Google Scholar]
  25. Jolley K, Feil E. J, Chan M. S., Maiden M. C. J. 2001; Sequence type analysis and recombinational tests (START. Bioinformatics17:1230–1231
    [Google Scholar]
  26. Kumar A, Dietrich S, Schneider W, Jacobson R, Pouch Downes F, Robinson-Dunn B. E, Honicky R, Smith J., Martin R. 1997; Genetic relatedness of Burkholderia ( Pseudomonas ) cepacia isolates from five cystic fibrosis centers in Michigan. Resp Med91:485–492
    [Google Scholar]
  27. Lan R., Reeves P. R. 1996; Gene transfer is a major factor in bacterial evolution. Mol Biol Evol13:47–55
    [Google Scholar]
  28. Ledson M. J, Gallagher M. J, Jackson M, Hart C. A., Walshaw M. J. 2002; Outcome of Burkholderia cepacia colonisation in an adult cystic fibrosis centre. Thorax57:142–145
    [Google Scholar]
  29. Lessie T. G, Hendrickson W, Manning B. D., Devereux R. 1996; Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett144:117–128
    [Google Scholar]
  30. LiPuma J. J. 1998; Burkholderia cepacia : management issues and new insight. Clin Chest Med19:473–486
    [Google Scholar]
  31. LiPuma J. J, Mortensen J. E, Dasen S. E, Edlind T. D, Schidlow D. V, Burns J. L., Stull T. L. 1988; Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr113:859–862
    [Google Scholar]
  32. LiPuma J. J, Spilker T, Gill L. H, Campbell P. W, Liu L., Mahenthiralingam E. 2001; Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Resp Crit Care Med164:92–96
    [Google Scholar]
  33. LiPuma J. J, Spilker T, Coenye T., Gonzalez C. F. 2002; An epidemic Burkholderia cepacia complex strain identified in soil. Lancet359:2002–2003
    [Google Scholar]
  34. Mahenthiralingam E, Simpson D. A., Speert D. P. 1997; Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol35:808–816
    [Google Scholar]
  35. Mahenthiralingam E, Bischof J, Byrne S. K, Radomski C, Davies J. E, Av-Gay Y., Vandamme P. 2000; DNA-based diagnostic approaches for the identification of Burkholderia cepacia complex, Burkholderia vietnamiensis , Burkholderia multivorans , Burkholderia stabilis and Burkholderia cepacia genomovars I and III. J Clin Microbiol38:3165–3173
    [Google Scholar]
  36. Maiden M. C. J, Bygraves J. A, Feil E.. 10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145
    [Google Scholar]
  37. Maynard Smith J, Smith N. H, O’Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A90:4384–4388
    [Google Scholar]
  38. McArthur J. V, Kovavic D. A., Smith M. H. 1988; Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci U S A85:9621–9624
    [Google Scholar]
  39. Musser J. M. 1996; Molecular population genetic analysis of emerged bacterial pathogens: selected insights. Emerg Infect Dis2:1–17
    [Google Scholar]
  40. Nzula S, Vandamme P., Govan J. R. W. 2000; Sensitivity of the Burkholderia cepacia complex and Pseudomonas aeruginosa to transducing bacteriophages. FEMS Immunol Med Microbiol28:307–312
    [Google Scholar]
  41. Parke J. L., Gurian-Sherman D. 2001; Diversity of Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol39:225–258
    [Google Scholar]
  42. Richardson J, Stead D. E., Coutts R. H. A. 2001; Incidence of the cblA major subunit pilin gene amongst Burkholderia species. FEMS Microbiol Lett196:61–66
    [Google Scholar]
  43. Speert D. P, Bond M, Woodmann R. C., Curnutte J. T. 1994; Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. J Infect Dis170:1524–1531
    [Google Scholar]
  44. Speert D. P, Henry D, Vandamme P, Corey M., Mahenthiralingam E. 2002; Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis8:181–187
    [Google Scholar]
  45. Spratt B. G., Maiden M. J. C. 1999; Bacterial population genetics, evolution and epidemiology. Philos Trans R Soc Lond B Biol Sci354:701–710
    [Google Scholar]
  46. Sun L, Jiang R. Z, Steinbach S.. 7 other authors 1995; The emergence of a highly transmissable lineage of cbl + Pseudomonas ( Burkholderia ) cepacia causing CF centre epidemics in North America and Britain. Nat Med1:661–666
    [Google Scholar]
  47. Tyler S. D, Rozee K. R., Johnson W. M. 1996; Identification of IS 1356 , a new insertion sequence, and its association with IS 402 in epidemic strains of Burkholderia cepacia infecting cystic fibrosis patients. J Clin Microbiol34:1610–1616
    [Google Scholar]
  48. Vandamme P, Holmes B, Vancanneyt M.. 8 other authors 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol47:1188–1200
    [Google Scholar]
  49. Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma J. J, Speert D. P, Govan J. R. W., Mahenthiralingam E. 2002; Burkholderia anthina sp. nov. and Burkholderia pyrrocinia , two additional Burkholderia cepacia complex bacteria, may confound test results of new molecular diagnostic tools. FEMS Immunol Med Microbiol33:143–149
    [Google Scholar]
  50. Wise M. G, Shimkets L. J., McArthur J. V. 1995; Genetic structure of a lotic population of Burkholderia ( Pseudomonas ) cepacia. Appl Environ Microbiol61:1791–1798
    [Google Scholar]
  51. Wise M. G, McArthur J. V, Wheat C., Shimkets L. J. 1996; Temporal variation in genetic diversity and structure of a lotic population of Burkholderia ( Pseudomonas ) cepacia. Appl Environ Microbiol62:1558–1562
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25850-0
Loading
/content/journal/micro/10.1099/mic.0.25850-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error