1887

Abstract

The homologous CsgD and AgfD proteins are members of the FixJ/UhpA/LuxR family and are proposed to regulate curli (thin aggregative fibres) and cellulose production by and serovar Typhimurium, respectively. A plasmid containing part of the gene was isolated during a screen for multicopy suppressors of glycine auxotrophy caused by deleting the gene in . The sequence of the plasmid suggests it encodes a chimaeric protein. Plasmids containing the intact or gene also caused suppression. Cells transformed with the recombinant plasmids contained higher serine hydroxymethyltransferase (SHMT) activity than controls. The increase could also be monitored by assaying -galactosidase activity from a reporter strain with part of the SHMT gene, , fused to . The increase in SHMT activity was sufficient to correct the glycine auxotrophy of strains lacking . The recombinant plasmids also enabled K-12 strains that are not curli-proficient to make curli. Curlin, the major component of curli, contains more glycine than normal proteins. It is proposed that CsgD upregulates to facilitate synthesis of curli. It is suggested that recombinant plasmids produce enough CsgD or chimaeric protein to titrate out a ligand that switches CsgD into its inactive form. As a result, sufficient active CsgD is present to activate genes in its regulon. It is concluded that CsgD increases expression of the gene either directly or indirectly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25841-0
2003-02-01
2020-05-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149525.html?itemId=/content/journal/micro/10.1099/mic.0.25841-0&mimeType=html&fmt=ahah

References

  1. Ahrweiler P., Frieden C. 1988; Construction of a fol mutant strain of Escherichia coli for use in dihydrofolate reductase mutagenesis experiments. J Bacteriol170:3301–3304
    [Google Scholar]
  2. Altschul S. F, Madden T. L, Schaffer A. A, Zhang J, Zhang Z, Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Amann E., Brosius J. 1985; ‘ATG vectors' for regulated high-level expression of cloned genes in Escherichia coli. Gene40:183–190
    [Google Scholar]
  4. Arnqvist A, Olsén A, Pfeifer J, Russell D. G., Normark S. 1992; The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101. Mol Microbiol6:2443–2452
    [Google Scholar]
  5. Arnqvist A, Olsén A., Normark S. 1994; Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol13:1021–1032
    [Google Scholar]
  6. Austin J. W, Sanders G, Kay W. W., Collinson S. K. 1998; Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett162:295–301
    [Google Scholar]
  7. Baikalov I, Schroder I, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus R. P., Dickerson R. E. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry35:11053–11061
    [Google Scholar]
  8. Ben Nasr A, Olsén A, Sjobring U, Muller-Esterl W., Bjorck L. 1996; Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol20:927–935
    [Google Scholar]
  9. Bian Z, Brauner A, Li Y., Normark S. 2000; Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis181:602–612
    [Google Scholar]
  10. Brown P. K, Dozois C. M, Nickerson C. A, Zuppardo A, Terlonge J., Curtiss R. 3rd. 2001; MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol41:349–363
    [Google Scholar]
  11. Brown R. E, Jarvis K. L., Hyland K. J. 1989; Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem180:136–139
    [Google Scholar]
  12. Chapman M. R, Robinson L. S, Pinkner J. S, Roth R, Heuser J, Hammar M, Normark S., Hultgren S. J. 2002; Role of Escherichia coli curli operons in directing amyloid fiber formation. Science295:851–855
    [Google Scholar]
  13. Chung C. T, Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A86:2172–2175
    [Google Scholar]
  14. Collinson S. K, Emody L, Muller K. H, Trust T. J., Kay W. W. 1991; Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol173:4773–4781
    [Google Scholar]
  15. Collinson S. K, Clouthier S. C, Doran J. L, Banser P. A., Kay W. W. 1996; Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol178:662–667
    [Google Scholar]
  16. Collinson S. K, Clouthier S. C, Doran J. L, Banser P. A., Kay W. W. 1997; Characterization of the agfBA fimbrial operon encoding thin aggregative fimbriae of Salmonella enteritidis. Adv Exp Med Biol412:247–248
    [Google Scholar]
  17. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res16:10881–10890
    [Google Scholar]
  18. Csonka L. N., Clark A. J. 1979; Deletions generated by the transposon Tn 10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics93:321–343
    [Google Scholar]
  19. De Wulf P, Kwon O., Lin E. C. 1999; The CpxRA signal transduction system of Escherichia coli : growth-related autoactivation and control of unanticipated target operons. J Bacteriol181:6772–6778
    [Google Scholar]
  20. Dorel C, Vidal O, Prigent-Combaret C, Vallet I., Lejeune P. 1999; Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett178:169–175
    [Google Scholar]
  21. Ducros V. M, Lewis R. J, Verma C. S, Dodson E. J, Leonard G, Turkenburg J. P, Murshudov G. N, Wilkinson A. J., Brannigan J. A. 2001; Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol306:759–771
    [Google Scholar]
  22. Fraser J., Newman E. B. 1975; Derivation of glycine from threonine in Escherichia coli K-12 mutants. J Bacteriol122:810–817
    [Google Scholar]
  23. Gerstel U., Römling U. 2001; Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol3:638–648
    [Google Scholar]
  24. Gophna U, Barlev M, Seijffers R, Oelschlager T. A, Hacker J., Ron E. Z. 2001; Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun69:2659–2665
    [Google Scholar]
  25. Greene R. C., Radovich C. 1975; Role of methionine in the regulation of serine hydroxymethyltransferase in Escherichia coli. J Bacteriol124:269–278
    [Google Scholar]
  26. Groisman E. A., Casadaban M. J. 1987; Cloning of genes from members of the family Enterobacteriaceae with mini-Mu bacteriophage containing plasmid replicons. J Bacteriol169:687–693
    [Google Scholar]
  27. Hamm-Alvarez S. F, Sancar A., Rajagopalan K. V. 1990; The presence and distribution of reduced folates in Escherichia coli dihydrofolate reductase mutants. J Biol Chem265:9850–9856
    [Google Scholar]
  28. Hammar M, Arnqvist A, Bian Z, Olsén A., Normark S. 1995; Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol18:661–670
    [Google Scholar]
  29. Hammar M, Bian Z., Normark S. 1996; Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A93:6562–6566
    [Google Scholar]
  30. Herrington M. B., Chirwa N. T. 1999; Growth properties of a folA null mutant of Escherichia coli K12. Can J Microbiol45:191–200
    [Google Scholar]
  31. Howell E. E, Foster P. G., Foster L. M. 1988; Construction of a dihydrofolate reductase-deficient mutant of Escherichia coli by gene replacement. J Bacteriol170:3040–3045
    [Google Scholar]
  32. Jourdan A. D., Stauffer G. V. 1998; Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol180:4865–4871
    [Google Scholar]
  33. Kahn D., Ditta G. 1991; Modular structure of FixJ: homology of the transcriptional activator domain with the −35 binding domain of sigma factors. Mol Microbiol5:987–997
    [Google Scholar]
  34. Kilstrup M, Meng L. M, Neuhard J., Nygaard P. 1989; Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol171:2124–2127
    [Google Scholar]
  35. Krishnan B. R., Berg D. E. 1993; Viability of folA -null derivatives of wild-type ( thyA +) Escherichia coli K-12. J Bacteriol175:909–911
    [Google Scholar]
  36. La Ragione R. M, Collighan R. J., Woodward M. J. 1999; Non-curliation of Escherichia coli O78 : K80 isolates associated with IS1 insertion in csgB and reduced persistence in poultry infection. FEMS Microbiol Lett175:247–253
    [Google Scholar]
  37. Loferer H, Hammar M., Normark S. 1997; Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol26:11–23
    [Google Scholar]
  38. Lorenz E., Stauffer G. V. 1995; Characterization of the MetR binding sites for the glyA gene of Escherichia coli. J Bacteriol177:4113–4120
    [Google Scholar]
  39. Mansouri A, Decter J. B., Silber R. 1972; Studies on the regulation of one-carbon metabolism. II. Repression-derepression of serine hydroxymethyltransferase by methionine in Escherichia coli 113-3. J Biol Chem247:348–352
    [Google Scholar]
  40. Marchler-Bauer A, Panchenko A. R, Shoemaker B. A, Thiessen P. A, Geer L. Y., Bryant S. H. 2002; CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res30:281–283
    [Google Scholar]
  41. Matthews R. G. others 1996; One-carbon metabolism. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp600–611 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Maurer J. J, Brown T. P, Steffens W. L., Thayer S. G. 1998; The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Dis42:106–118
    [Google Scholar]
  43. Messing J. 1983; New M13 vectors for cloning. Methods Enzymol101:20–78
    [Google Scholar]
  44. Miller B. A., Newman E. B. 1974; Control of serine transhydroxymethylase synthesis in Escherichia coli K12. Can J Microbiol20:41–47
    [Google Scholar]
  45. Miller J. H. 1992; A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Neidhardt F. C., Umbarger H. E. others 1996; Chemical composition of Escherichia coli . In Escherichia coli and Salmonella: Cellular and Molecular Biology pp13–16 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Oh M. K., Liao J. C. 2000; DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab Eng2:201–209
    [Google Scholar]
  48. Olsén A, Jonsson A., Normark S. 1989; Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature338:652–655
    [Google Scholar]
  49. Olsén A, Arnqvist A, Hammar M., Normark S. 1993a; Environmental regulation of curli production in Escherichia coli. Infect Agents Dis2:272–274
    [Google Scholar]
  50. Olsén A, Arnqvist A, Hammar M, Sukupolvi S., Normark S. 1993b; The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA , the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol7:523–536
    [Google Scholar]
  51. Olsén A, Wick M. J, Morgelin M., Bjorck L. 1998; Curli, fibrous surface proteins of Escherichia coli , interact with major histocompatibility complex class I molecules. Infect Immun66:944–949
    [Google Scholar]
  52. Prigent-Combaret C, Vidal O, Dorel C., Lejeune P. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol181:5993–6002
    [Google Scholar]
  53. Prigent-Combaret C, Prensier G, Le Thi T. T, Vidal O, Lejeune P., Dorel C. 2000; Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol2:450–464
    [Google Scholar]
  54. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P., Dorel C. 2001; Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol183:7213–7223
    [Google Scholar]
  55. Ravnikar P. D., Somerville R. L. 1987; Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli. J Bacteriol169:2611–2617
    [Google Scholar]
  56. Römling U, Bian Z, Hammar M, Sierralta W. D., Normark S. 1998a; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol180:722–731
    [Google Scholar]
  57. Römling U, Sierralta W. D, Eriksson K., Normark S. 1998b; Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol28:249–264
    [Google Scholar]
  58. Römling U, Rohde M, Olsén A, Normark S., Reinkoster J. 2000; AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol36:10–23
    [Google Scholar]
  59. Sakellaris H, Hannink N. K, Rajakumar K, Bulach D, Hunt M, Sasakawa C., Adler B. 2000; Curli loci of Shigella spp. Infect Immun68:3780–3783
    [Google Scholar]
  60. Sambrook J, Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  61. Sitnikov D. M, Schineller J. B., Baldwin T. O. 1995; Transcriptional regulation of bioluminesence genes from Vibrio fischeri. Mol Microbiol17:801–812
    [Google Scholar]
  62. Sjobring U, Pohl G, Olsén A. 1994; Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA. Mol Microbiol14:443–452
    [Google Scholar]
  63. Solo-Gabriele H. M, Wolfert M. A, Desmarais T. R., Palmer C. J. 2000; Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol66:230–237
    [Google Scholar]
  64. Souza V, Rocha M, Valera A., Eguiarte L. E. 1999; Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl Environ Microbiol65:3373–3385
    [Google Scholar]
  65. Stauffer G. V, Plamann M. D., Stauffer L. T. 1981; Construction and expression of hybrid plasmids containing the Escherichia coli glyA genes. Gene14:63–72
    [Google Scholar]
  66. Stauffer G. V. 1996; Biosynthesis of serine, glycine and one-carbon units. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp506–513 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  67. Steiert J. G, Rolfes R. J, Zalkin H., Stauffer G. V. 1990; Regulation of the Escherichia coli glyA gene by the purR gene product. J Bacteriol172:3799–3803
    [Google Scholar]
  68. Sutcliffe J. G. 1978; Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A75:3737–3741
    [Google Scholar]
  69. Taylor R. T., Weissbach H. 1965; Radioactive assay for serine transhydroxymethylase assay. Anal Biochem13:80–84
    [Google Scholar]
  70. Uhlich G. A, Keen J. E., Elder R. O. 2001; Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157 : H7. Appl Environ Microbiol67:2367–2370
    [Google Scholar]
  71. Uhlich G. A, Keen J. E., Elder R. O. 2002; Variations in the csgD promoter of Escherichia coli O157 : H7 associated with increased virulence in mice and increased invasion of HEp-2 cells. Infect Immun70:395–399
    [Google Scholar]
  72. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M., Lejeune P. 1998; Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol180:2442–2449
    [Google Scholar]
  73. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
  74. Zogaj X, Nimtz M, Rohde M, Bokranz W., Römling U. 2001; The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol39:1452–1463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25841-0
Loading
/content/journal/micro/10.1099/mic.0.25841-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error