1887

Abstract

is a common cause of urinary tract infections (UTIs) and pneumonia, especially in immunocompromised individuals. Epidemiological studies have revealed that infections are frequently preceded by gastrointestinal colonization and the gastrointestinal tract is believed to be the most important reservoir for transmission of the bacteria. To identify genes involved in the ability of to colonize the intestine and infect the urinary tract, a novel multi-screening signature-tagged mutagenesis (MS-STM) assay was implemented. In the MS-STM assay, PCR-amplified tags present in the inoculum as well as recovered pools from each infection model are simultaneously subjected to hybridization using each specific tag as a probe. Therefore, screenings of a mutant library in more than one infection model is significantly eased compared to the traditional signature-tagged mutagenesis methodology. From a total of 1440 transposon mutants screened, 13 mutants were identified as attenuated in intestinal colonization as well as the UTI model. In addition, six mutants attenuated only in the UTI model were identified. Transposon insertion sites in attenuated mutants were, among others, in genes encoding well-known virulence factors such as lipopolysaccharide and capsule, as well as in genes of unknown function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25833-0
2003-01-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_17.html?itemId=/content/journal/micro/10.1099/mic.0.25833-0&mimeType=html&fmt=ahah

References

  1. Andrianopoulos K, Wang L., Reeves P. R. 1998; Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol180:998–1001
    [Google Scholar]
  2. Ausubel F. M, Brent R, Kingston R. E, Moore D. E, Seidman J. G, Smith J. A., Struhl K. 1995; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Behrens S, Maier R, de Cock H, Schmid F. X., Gross C. A. 2001; The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J20:285–294
    [Google Scholar]
  4. Benedi V. J, Vivanco F., Tomas J. M. 1998; Complement activation in Klebsiella pneumoniae. Rev Med Microbiol9:69–77
    [Google Scholar]
  5. Bispham J, Tripathi B. N, Watson P. R., Wallis T. S. 2001; Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella -induced enteritis in calves. Infect Immun69:367–377
    [Google Scholar]
  6. Camprubi S, Merino S, Benedi V. J., Tomas J. M. 1993a; The role of the O-antigen lipopolysaccharide and capsule on an experimental Klebsiella pneumoniae infection of the rat urinary tract. FEMS Microbiol Lett111:9–13
    [Google Scholar]
  7. Camprubi S, Merino S, Guillot J. F., Tomas J. M. 1993b; The role of the O-antigen lipopolysaccharide on the colonization in vivo of the germfree chicken gut by Klebsiella pneumoniae. Microb Pathog14:433–440
    [Google Scholar]
  8. Chakraborty A. K, Friebolin H, Niemann H., Stirm S. 1977; Primary structure of the Klebsiella serotype 16 capsular polysaccharide. Carbohydr Res59:525–530
    [Google Scholar]
  9. Clarke B. R, Bronner D, Keenleyside W. J, Severn W. B, Richards J. C., Whitfield C. 1995; Role of Rfe and RfbF in the initiation of biosynthesis of d-galactan I, the lipopolysaccharide O-antigen from Klebsiella pneumoniae serotype O1. J Bacteriol177:5411–5418
    [Google Scholar]
  10. Connell H, Agace W, Klemm P, Schembri M, Marild S., Svanborg C. 1996; Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A93:9827–9832
    [Google Scholar]
  11. Cortés G, Borrell N, de Astorza B, Gomez C, Sauleda J., Alberti S. 2002; Molecular analysis of the contribution of the capsular polysaccharide and lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun70:2583–2590
    [Google Scholar]
  12. Coulter S. N, Schwan W. R, Ng E. Y.. 7 other authors 1998; Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol30:393–404
    [Google Scholar]
  13. Favre-Bonte S, Licht T. R, Forestier C., Krogfelt K. A. 1999; Klebsiella pneumoniae capsule expression is necessary for colonization of large intestine of streptomycin-treated mice. Infect Immun67:6152–6156
    [Google Scholar]
  14. Fuller T. E, Kennedy M. J., Lowery D. E. 2000; Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog29:25–38
    [Google Scholar]
  15. Gunsalus R. P., Park S. J. 1994; Aerobic–anaerobic gene regulation in Escherichia coli : control by the ArcAB and Fnr regulons. Res Microbiol145:437–450
    [Google Scholar]
  16. Hansen D. S, Gottschau A., Kolmos H. J. 1998; Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. J Hosp Infect38:119–132
    [Google Scholar]
  17. Hensel M, Shea J. E, Gleeson C, Jones M. D, Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science269:400–403
    [Google Scholar]
  18. Herrero M, de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol172:6557–6567
    [Google Scholar]
  19. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol154:269–277
    [Google Scholar]
  20. Hvidberg H, Struve C, Krogfelt K. A, Christensen N, Rasmussen S. N., Frimodt-Møller N. 2000; Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob Agents Chemother44:156–163
    [Google Scholar]
  21. Keane W. F., Freedman L. R. 1967; Experimental pyelonephritis. XIV. Pyelonephritis in normal mice produced by inoculation of E. coli into the bladder lumen during water diuresis. Yale J Biol Med40:231–237
    [Google Scholar]
  22. Lai Y. C, Peng H. L., Chang H. Y. 2001; Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun69:7140–7145
    [Google Scholar]
  23. Langermann S, Palaszynski S, Barnhart M.. 8 other authors 1997; Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science276:607–611
    [Google Scholar]
  24. Lau G. W, Haataja S, Lonetto M, Kensit S. E, Marra A, Bryant A. P, McDevitt D, Morrison D. A., Holden D. W. 2001; A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol40:555–571
    [Google Scholar]
  25. Lazar S. W., Kolter R. 1996; SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol178:1770–1773
    [Google Scholar]
  26. Licht T. R, Krogfelt K. A, Cohen P. S, Poulsen L. K, Urbance J., Molin S. 1996; Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization. Infect Immun64:3811–3817
    [Google Scholar]
  27. Maroncle N, Balestrino D, Rich C., Forestier C. 2002; Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect Immun70:4729–4734
    [Google Scholar]
  28. Martindale J, Stroud D, Moxon E. R., Tang C. M. 2000; Genetic analysis of Escherichia coli K1 gastrointestinal colonization. Mol Microbiol37:1293–1305
    [Google Scholar]
  29. Mei J. M, Nourbakhsh F, Ford C. W., Holden D. W. 1997; Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol26:399–407
    [Google Scholar]
  30. Merino S, Rubires X, Aguilar A., Tomas J. M. 1997; The role of O1-antigen in the adhesion to uroepithelial cells of Klebsiella pneumoniae grown in urine. Microb Pathog23:49–53
    [Google Scholar]
  31. Merino S, Altarriba M, Izquierdo L, Nogueras M. M, Regue M., Tomas J. M. 2000; Cloning and sequencing of the Klebsiella pneumoniae O5 wb gene cluster and its role in pathogenesis. Infect Immun68:2435–2440
    [Google Scholar]
  32. Merrell D. D, Hava D. L., Camilli A. 2002; Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol43:1471–1491
    [Google Scholar]
  33. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol170:2575–2583
    [Google Scholar]
  34. Montgomerie J. Z. 1979; Epidemiology of Klebsiella and hospital-associated infections. Rev Infect Dis1:736–753
    [Google Scholar]
  35. Nikado H. others 1996; Outer membrane. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn.vol. I pp29–47 Edited by Niedhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Oelschlaeger T. A., Tall B. D. 1997; Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect Immun65:2950–2958
    [Google Scholar]
  37. Ørskov I., Ørskov F. 1984; Serotyping of Klebsiella . In Methods in Microbiology pp143–164 Edited by Bergan T.. London: Academic Press;
    [Google Scholar]
  38. Podschun R., Ullmann U. 1998; Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev11:589–603
    [Google Scholar]
  39. Prasadarao N. V, Wass C. A, Weiser J. N, Stins M. F, Huang S. H., Kim K. S. 1996; Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun64:146–153
    [Google Scholar]
  40. Regue M, Climent N, Abitiu N, Coderch N, Merino S, Izquierdo L, Altarriba M., Tomas J. M. 2001; Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol183:3564–3573
    [Google Scholar]
  41. Shannon K, Stapleton P, Xiang X, Johnson A, Beattie H, El Bakri F, Cookson B., French G. 1998; Extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains causing nosocomial outbreaks of infection in the United Kingdom. J Clin Microbiol36:3105–3110
    [Google Scholar]
  42. Shea J. E, Santangelo J. D., Feldman R. G. 2000; Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr Opin Microbiol3:451–458
    [Google Scholar]
  43. Sokurenko E. V, Chesnokova V, Dykhuizen D. E, Ofek I, Wu X. R, Krogfelt K. A, Struve C, Schembri M. A., Hasty D. A. 1998; Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A95:8922–8926
    [Google Scholar]
  44. Struve C., Krogfelt K. A. 1999; In vivo detection of Escherichia coli type 1 fimbrial expression and phase variation during experimental urinary tract infection. Microbiology145:2683–2690
    [Google Scholar]
  45. Sydenham M, Douce G, Bowe F, Ahmed S, Chatfield S., Dougan G. 2000; Salmonella enterica serovar Typhimurium surA mutants are attenuated and effective live oral vaccines. Infect Immun68:1109–1115
    [Google Scholar]
  46. Tormo A, Almiron M., Kolter R. 1990; surA , an Escherichia coli gene essential for survival in stationary phase. J Bacteriol172:4339–4347
    [Google Scholar]
  47. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem119:115–119
    [Google Scholar]
  48. Tsolis R. M, Townsend S. M, Miao E. A, Miller S. I, Flicht T. A, Adams L. G., Bäumler A. J. 1999; Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun67:6385–6393
    [Google Scholar]
  49. Verma A, Desai N, Shannon K, Philpott-Howard J., Hill R. L. 2001; Intra- and inter-generic plasmid-mediated spread of cephalosporin and aminoglycoside resistance amongst Klebsiella aerogenes K41 and other enterobacteria. Int J Antimicrob Agents17:123–129
    [Google Scholar]
  50. Wada M, Kano Y, Ogawa T, Okazaki T., Imamoto F. 1988; Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli. J Mol Biol204:581–591
    [Google Scholar]
  51. Weiser J. N., Gotschlich E. C. 1991; Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun59:2252–2258
    [Google Scholar]
  52. Zhang Y., Cronan J. E. J. 1998; Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster. J Bacteriol180:3295–3303
    [Google Scholar]
  53. Zhao H, Li X, Johnson D. E., Mobley H. L. T. 1999; Identification of protease and rpoN -associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. Microbiology145:185–195
    [Google Scholar]
  54. Zuurmond A. M, Rundlof A. K., Kraal B. 1999; Either of the chromosomal tuf genes of E. coli K-12 can be deleted without loss of cell viability. Mol Gen Genet260:603–607
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25833-0
Loading
/content/journal/micro/10.1099/mic.0.25833-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error