1887

Abstract

is a facultative intracellular bacterial pathogen that regulates the expression of virulence-associated gene products in response to specific host cell compartment environments. The PrfA protein of functions as a key regulatory factor required for the differential expression of bacterial virulence gene products within infected host cells. PrfA both positively and negatively regulates its own expression, and while PrfA positive regulation is required for cell-to-cell spread of and for full virulence in infected mice, a role for negative regulation has been of presumed importance but has yet to be established. To address the role of negative regulation of expression in pathogenesis, promoter mutations designed to reduce or eliminate negative regulation were introduced into and analysed for their effects on patterns of PrfA-dependent gene expression and virulence in murine models of infection. High level PrfA production resulting from the promoter mutations produced significantly increased levels of PrfA-regulated gene expression in broth-grown cultures; however the apparent loss of negative regulation had no deleterious effects on growth and spread of the bacteria within infected tissue culture cells or on virulence in mice. The results indicate that while negative regulation of expression exists and provides a feedback system for the control of PrfA synthesis, this feedback system is dispensable for virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25692-0
2003-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_12.html?itemId=/content/journal/micro/10.1099/mic.0.25692-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1991; ). Current Protocols in Molecular Biology. New York: Greene Publishing Associates.
  2. Behari, J. & Youngman, P. ( 1998; ). Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun 66, 3635–3642.
    [Google Scholar]
  3. Bohne, J., Kestler, H., Uebele, C., Sokolovic, Z. & Goebel, W. ( 1996; ). Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol Microbiol 20, 1189–1198.[CrossRef]
    [Google Scholar]
  4. Brundage, R. A., Smith, G. A., Camilli, A., Theriot, J. A. & Portnoy, D. A. ( 1993; ). Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci U S A 90, 11890–11894.[CrossRef]
    [Google Scholar]
  5. Bubert, A., Sokolovic, Z., Chun, S.-K., Papatheodorou, L., Simm, A. & Goebel, W. ( 1999; ). Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261, 323–336.
    [Google Scholar]
  6. Camilli, A., Paynton, C. R. & Portnoy, D. A. ( 1989; ). Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a macrophage cell line. Proc Natl Acad Sci U S A 86, 5522–5526.[CrossRef]
    [Google Scholar]
  7. Camilli, A., Tilney, L. G. & Portnoy, D. A. ( 1993; ). Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8, 143–157.[CrossRef]
    [Google Scholar]
  8. Chakraborty, T., Leimeister-Wachter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T. & Notermans, S. ( 1992; ). Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174, 568–574.
    [Google Scholar]
  9. Cotter, P. A. & DiRita, V. J. ( 2000; ). Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54, 519–565.[CrossRef]
    [Google Scholar]
  10. Cotter, P. A. & Miller, J. F. ( 1997; ). A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol 24, 671–685.[CrossRef]
    [Google Scholar]
  11. Datta, A. R. & Kothary, M. H. ( 1993; ). Effects of glucose, growth temperature, and pH on Listeriolysin O production in Listeria monocytogenes. Appl Environ Microbiol 59, 3495–3497.
    [Google Scholar]
  12. Freitag, N. E. & Jacobs, K. E. ( 1999; ). Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect Immun 67, 1844–1852.
    [Google Scholar]
  13. Freitag, N. E. & Portnoy, D. A. ( 1994; ). Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol 12, 845–853.[CrossRef]
    [Google Scholar]
  14. Freitag, N. E., Rong, L. & Portnoy, D. A. ( 1993; ). Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61, 2537–2544.
    [Google Scholar]
  15. Garcia Vescovi, E., Soncini, F. C. & Groisman, E. A. ( 1996; ). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165–174.[CrossRef]
    [Google Scholar]
  16. Garges, S. & Adhya, S. ( 1985; ). Sites of allosteric shift in the structure of cyclic AMP receptor protein. Cell 41, 745–751.[CrossRef]
    [Google Scholar]
  17. Gellin, B. G. & Broome, C. V. ( 1989; ). Listeriosis. J Amer Med Assoc 261, 1313–1320.[CrossRef]
    [Google Scholar]
  18. Gray, M. L. & Killinger, A. H. ( 1966; ). Listeria monocytogenes and listeric infections. Bacteriol Rev 30, 309–382.
    [Google Scholar]
  19. Harman, J. G., McKenney, K. & Peterkofsky, A. ( 1986; ). Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein. J Biol Chem 261, 16332–16339.
    [Google Scholar]
  20. Herbert, K. C. & Foster, S. J. ( 2001; ). Starvation survival in Listeria monocytogenes: characterization of the response and the role of known and novel components. Microbiology 147, 2275–2284.
    [Google Scholar]
  21. Jones, S. & Portnoy, D. A. ( 1994; ). Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun 62, 5608–5613.
    [Google Scholar]
  22. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. ( 1993; ). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62, 749–795.[CrossRef]
    [Google Scholar]
  23. Kreft, J. & Vazquez-Boland, J. A. ( 2001; ). Regulation of virulence genes in Listeria. Int J Med Microbiol 291, 145–157.[CrossRef]
    [Google Scholar]
  24. Lampidis, R., Gross, R., Sokolovic, Z., Goebel, W. & Kreft, J. ( 1994; ). The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol 13, 141–151.[CrossRef]
    [Google Scholar]
  25. Lee, S. H. & Camilli, A. ( 2000; ). Novel approaches to monitor bacterial gene expression in infected tissue and host. Curr Opin Microbiol 3, 97–101.[CrossRef]
    [Google Scholar]
  26. Mahan, M. J., Tobias, J. W., Slauch, J. M., Hanna, P. C., Collier, R. J. & Mekalanos, J. J. ( 1995; ). Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A 92, 669–673.[CrossRef]
    [Google Scholar]
  27. Marquis, H., Doshi, V. & Portnoy, D. A. ( 1995; ). The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63, 4531–4534.
    [Google Scholar]
  28. Mengaud, J., Dramsi, S., Gouin, E., Vazquez-Boland, J. A., Milon, G. & Cossart, P. ( 1991; ). Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5, 2273–2283.[CrossRef]
    [Google Scholar]
  29. Michel, E., Mengaud, J., Galsworthy, S. & Cossart, P. ( 1998; ). Characterization of a large motility gene cluster containing the cheR, motAB genes of Listeria monocytogenes and evidence that PrfA downregulates motility genes. FEMS Microbiol Lett 15, 341–347.
    [Google Scholar]
  30. Millenbachs, A. A., Brown, D. P., Moors, M. & Youngman, P. ( 1997; ). Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23, 1075–1085.[CrossRef]
    [Google Scholar]
  31. Moors, M. A., Levitt, B., Youngman, P. & Portnoy, D. A. ( 1999; ). Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67, 131–139.
    [Google Scholar]
  32. Park, S. F. & Kroll, R. G. ( 1993; ). Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 8, 653–661.[CrossRef]
    [Google Scholar]
  33. Portnoy, D. A., Jacks, P. S. & Hinrichs, D. J. ( 1988; ). Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459–1471.[CrossRef]
    [Google Scholar]
  34. Renzoni, A., Klarsfeld, A., Dramsi, S. & Cossart, P. ( 1997; ). Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes can be present but inactive. Infect Immun 65, 1515–1518.
    [Google Scholar]
  35. Renzoni, A., Cossart, P. & Dramsi, S. ( 1999; ). PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34, 552–561.[CrossRef]
    [Google Scholar]
  36. Ripio, M.-T., Dominguez-Bernal, G., Lara, M., Suarez, M. & Vazquez-Boland, J.-A. ( 1997; ). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol 179, 1533–1540.
    [Google Scholar]
  37. Ripio, M. T., Vazquez-Boland, J. A., Vega, Y., Nair, S. & Berche, P. ( 1998; ). Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol Lett 158, 45–50.[CrossRef]
    [Google Scholar]
  38. Sheehan, B., Klarsfeld, A., Msadek, T. & Cossart, P. ( 1995; ). Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol 177, 6469–6476.
    [Google Scholar]
  39. Shetron-Rama, L. M., Marquis, H., Bouwer, H. G. A. & Freitag, N. E. ( 2002; ). Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 70, 1087–1096.[CrossRef]
    [Google Scholar]
  40. Slauch, J. M. & Camilli, A. ( 2000; ). IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods Enzymol 326, 73–96.
    [Google Scholar]
  41. Slauch, J. M., Mahan, M. J. & Mekalanos, J. J. ( 1994; ). In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol 235, 481–492.
    [Google Scholar]
  42. Smith, K. & Youngman, P. ( 1992; ). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74, 705–711.[CrossRef]
    [Google Scholar]
  43. Smith, G. A., Marquis, H., Jones, S., Johnston, N. C., Portnoy, D. A. & Goldfine, H. ( 1995; ). The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63, 4231–4237.
    [Google Scholar]
  44. Soncini, F. C., Garcia Vescovi, E., Solomon, F. & Groisman, E. A. ( 1996; ). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 178, 5092–5099.
    [Google Scholar]
  45. Stanley, T. L., Ellermeier, C. D. & Slauch, J. M. ( 2000; ). Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar typhimurium survival in Peyer's patches. J Bacteriol 182, 4406–4413.[CrossRef]
    [Google Scholar]
  46. Sun, A. N., Camilli, A. & Portnoy, D. A. ( 1990; ). Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58, 3770–3778.
    [Google Scholar]
  47. Swanson, M. S. & Hammer, B. K. ( 2000; ). Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54, 567–613.[CrossRef]
    [Google Scholar]
  48. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. & Kreft, J. ( 2001; ). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584–640.[CrossRef]
    [Google Scholar]
  49. Vega, Y., Dickneite, C., Ripio, M.-T., Böckmann, R., Gonzalez-Zorn, B., Novella, S., Gominguez-Bernal, G., Goebel, W. & Vazquez-Boland, W. ( 1998; ). Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol 180, 6655–6660.
    [Google Scholar]
  50. Wosten, M. M., Kox, L. F., Chamnongpol, S., Soncini, F. C. & Groisman, E. A. ( 2000; ). A signal transduction system that responds to extracellular iron. Cell 103, 113–125.[CrossRef]
    [Google Scholar]
  51. Youngman, P. ( 1987; ). Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram-positive bacteria. In Plasmids: a Practical Approach, pp. 79–103. Edited by K. Hardy. Oxford: IRL Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25692-0
Loading
/content/journal/micro/10.1099/mic.0.25692-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error