1887

Abstract

is a facultative intracellular bacterial pathogen that regulates the expression of virulence-associated gene products in response to specific host cell compartment environments. The PrfA protein of functions as a key regulatory factor required for the differential expression of bacterial virulence gene products within infected host cells. PrfA both positively and negatively regulates its own expression, and while PrfA positive regulation is required for cell-to-cell spread of and for full virulence in infected mice, a role for negative regulation has been of presumed importance but has yet to be established. To address the role of negative regulation of expression in pathogenesis, promoter mutations designed to reduce or eliminate negative regulation were introduced into and analysed for their effects on patterns of PrfA-dependent gene expression and virulence in murine models of infection. High level PrfA production resulting from the promoter mutations produced significantly increased levels of PrfA-regulated gene expression in broth-grown cultures; however the apparent loss of negative regulation had no deleterious effects on growth and spread of the bacteria within infected tissue culture cells or on virulence in mice. The results indicate that while negative regulation of expression exists and provides a feedback system for the control of PrfA synthesis, this feedback system is dispensable for virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25692-0
2003-01-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/1/mic149_12.html?itemId=/content/journal/micro/10.1099/mic.0.25692-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A., Struhl K. editors 1991; Current Protocols in Molecular Biology New York: Greene Publishing Associates;
    [Google Scholar]
  2. Behari J., Youngman P. 1998; Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun66:3635–3642
    [Google Scholar]
  3. Bohne J, Kestler H, Uebele C, Sokolovic Z., Goebel W. 1996; Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol Microbiol20:1189–1198
    [Google Scholar]
  4. Brundage R. A, Smith G. A, Camilli A, Theriot J. A., Portnoy D. A. 1993; Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci U S A90:11890–11894
    [Google Scholar]
  5. Bubert A, Sokolovic Z, Chun S.-K, Papatheodorou L, Simm A., Goebel W. 1999; Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet261:323–336
    [Google Scholar]
  6. Camilli A, Paynton C. R., Portnoy D. A. 1989; Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a macrophage cell line. Proc Natl Acad Sci U S A86:5522–5526
    [Google Scholar]
  7. Camilli A, Tilney L. G., Portnoy D. A. 1993; Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol8:143–157
    [Google Scholar]
  8. Chakraborty T, Leimeister-Wachter M, Domann E, Hartl M, Goebel W, Nichterlein T., Notermans S. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol174:568–574
    [Google Scholar]
  9. Cotter P. A., DiRita V. J. 2000; Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol54:519–565
    [Google Scholar]
  10. Cotter P. A., Miller J. F. 1997; A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol24:671–685
    [Google Scholar]
  11. Datta A. R., Kothary M. H. 1993; Effects of glucose, growth temperature, and pH on Listeriolysin O production in Listeria monocytogenes. Appl Environ Microbiol59:3495–3497
    [Google Scholar]
  12. Freitag N. E., Jacobs K. E. 1999; Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect Immun67:1844–1852
    [Google Scholar]
  13. Freitag N. E., Portnoy D. A. 1994; Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol12:845–853
    [Google Scholar]
  14. Freitag N. E, Rong L., Portnoy D. A. 1993; Regulation of the prfA transcriptional activator of Listeria monocytogenes : multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun61:2537–2544
    [Google Scholar]
  15. Garcia Vescovi E, Soncini F. C., Groisman E. A. 1996; Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell84:165–174
    [Google Scholar]
  16. Garges S., Adhya S. 1985; Sites of allosteric shift in the structure of cyclic AMP receptor protein. Cell41:745–751
    [Google Scholar]
  17. Gellin B. G., Broome C. V. 1989; Listeriosis. J Amer Med Assoc261:1313–1320
    [Google Scholar]
  18. Gray M. L., Killinger A. H. 1966; Listeria monocytogenes and listeric infections. Bacteriol Rev30:309–382
    [Google Scholar]
  19. Harman J. G, McKenney K., Peterkofsky A. 1986; Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein. J Biol Chem261:16332–16339
    [Google Scholar]
  20. Herbert K. C., Foster S. J. 2001; Starvation survival in Listeria monocytogenes : characterization of the response and the role of known and novel components. Microbiology147:2275–2284
    [Google Scholar]
  21. Jones S., Portnoy D. A. 1994; Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun62:5608–5613
    [Google Scholar]
  22. Kolb A, Busby S, Buc H, Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem62:749–795
    [Google Scholar]
  23. Kreft J., Vazquez-Boland J. A. 2001; Regulation of virulence genes in Listeria. Int J Med Microbiol291:145–157
    [Google Scholar]
  24. Lampidis R, Gross R, Sokolovic Z, Goebel W., Kreft J. 1994; The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol13:141–151
    [Google Scholar]
  25. Lee S. H., Camilli A. 2000; Novel approaches to monitor bacterial gene expression in infected tissue and host. Curr Opin Microbiol3:97–101
    [Google Scholar]
  26. Mahan M. J, Tobias J. W, Slauch J. M, Hanna P. C, Collier R. J., Mekalanos J. J. 1995; Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A92:669–673
    [Google Scholar]
  27. Marquis H, Doshi V., Portnoy D. A. 1995; The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun63:4531–4534
    [Google Scholar]
  28. Mengaud J, Dramsi S, Gouin E, Vazquez-Boland J. A, Milon G., Cossart P. 1991; Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol5:2273–2283
    [Google Scholar]
  29. Michel E, Mengaud J, Galsworthy S., Cossart P. 1998; Characterization of a large motility gene cluster containing the cheR, motAB genes of Listeria monocytogenes and evidence that PrfA downregulates motility genes. FEMS Microbiol Lett15:341–347
    [Google Scholar]
  30. Millenbachs A. A, Brown D. P, Moors M., Youngman P. 1997; Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol23:1075–1085
    [Google Scholar]
  31. Moors M. A, Levitt B, Youngman P., Portnoy D. A. 1999; Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun67:131–139
    [Google Scholar]
  32. Park S. F., Kroll R. G. 1993; Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol8:653–661
    [Google Scholar]
  33. Portnoy D. A, Jacks P. S., Hinrichs D. J. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med167:1459–1471
    [Google Scholar]
  34. Renzoni A, Klarsfeld A, Dramsi S., Cossart P. 1997; Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes can be present but inactive. Infect Immun65:1515–1518
    [Google Scholar]
  35. Renzoni A, Cossart P., Dramsi S. 1999; PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol34:552–561
    [Google Scholar]
  36. Ripio M.-T, Dominguez-Bernal G, Lara M, Suarez M., Vazquez-Boland J.-A. 1997; A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol179:1533–1540
    [Google Scholar]
  37. Ripio M. T, Vazquez-Boland J. A, Vega Y, Nair S., Berche P. 1998; Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol Lett158:45–50
    [Google Scholar]
  38. Sheehan B, Klarsfeld A, Msadek T., Cossart P. 1995; Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol177:6469–6476
    [Google Scholar]
  39. Shetron-Rama L. M, Marquis H, Bouwer H. G. A., Freitag N. E. 2002; Intracellular induction of Listeria monocytogenes actA expression. Infect Immun70:1087–1096
    [Google Scholar]
  40. Slauch J. M., Camilli A. 2000; IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods Enzymol326:73–96
    [Google Scholar]
  41. Slauch J. M, Mahan M. J., Mekalanos J. J. 1994; In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol235:481–492
    [Google Scholar]
  42. Smith K., Youngman P. 1992; Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie74:705–711
    [Google Scholar]
  43. Smith G. A, Marquis H, Jones S, Johnston N. C, Portnoy D. A., Goldfine H. 1995; The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun63:4231–4237
    [Google Scholar]
  44. Soncini F. C, Garcia Vescovi E, Solomon F., Groisman E. A. 1996; Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol178:5092–5099
    [Google Scholar]
  45. Stanley T. L, Ellermeier C. D., Slauch J. M. 2000; Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar typhimurium survival in Peyer's patches. J Bacteriol182:4406–4413
    [Google Scholar]
  46. Sun A. N, Camilli A., Portnoy D. A. 1990; Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun58:3770–3778
    [Google Scholar]
  47. Swanson M. S., Hammer B. K. 2000; Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol54:567–613
    [Google Scholar]
  48. Vazquez-Boland J. A, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev14:584–640
    [Google Scholar]
  49. Vega Y, Dickneite C, Ripio M.-T, Böckmann R, Gonzalez-Zorn B, Novella S, Gominguez-Bernal G, Goebel W., Vazquez-Boland W. 1998; Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol180:6655–6660
    [Google Scholar]
  50. Wosten M. M, Kox L. F, Chamnongpol S, Soncini F. C., Groisman E. A. 2000; A signal transduction system that responds to extracellular iron. Cell103:113–125
    [Google Scholar]
  51. Youngman P. 1987; Plasmid vectors for recovering and exploiting Tn 917 transpositions in Bacillus and other Gram-positive bacteria. In Plasmids: a Practical Approach pp79–103 Edited by Hardy K. Oxford: IRL Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25692-0
Loading
/content/journal/micro/10.1099/mic.0.25692-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error