1887

Abstract

A well-known virulence attribute of the human-pathogenic yeast is the secretion of aspartic proteases (Saps), which may contribute to colonization and infection of different host niches by degrading tissue barriers, destroying host defence molecules, or digesting proteins for nutrient supply. The role of individual Sap isoenzymes, which are encoded by a large gene family, for the pathogenicity of has been investigated by assessing the virulence of mutants lacking specific genes and by studying the expression pattern of the genes in various models of superficial and systemic infections. We used a recombination-based genetic reporter system to detect the induction of the genes during infection of reconstituted human vaginal epithelium. Only , but none of the other tested genes, was detectably activated in this infection model. To directly address the importance of the genes for invasion of reconstituted human epithelia (RHE), we constructed a set of mutants of the wild-type model strain SC5314 in which either single or multiple genes were specifically deleted. Even mutants lacking all of the or the genes displayed the same capacity to invade and damage both oral and vaginal RHE as their wild-type parental strain, in contrast to a nonfilamentous Δ mutant that was avirulent under these conditions. We therefore conclude from these results that the secreted aspartic proteases ap1pap6p are not required for invasion of RHE by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022525-0
2008-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3281.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022525-0&mimeType=html&fmt=ahah

References

  1. Bain, J. M., Stubberfield, C. & Gow, N. A. ( 2001; ). Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett 204, 323–328.[CrossRef]
    [Google Scholar]
  2. Brand, A., MacCallum, D. M., Brown, A. J., Gow, N. A. & Odds, F. C. ( 2004; ). Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3, 900–909.[CrossRef]
    [Google Scholar]
  3. Cheng, S., Nguyen, M. H., Zhang, Z., Jia, H., Handfield, M. & Clancy, C. J. ( 2003; ). Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus. Infect Immun 71, 6101–6103.[CrossRef]
    [Google Scholar]
  4. De Bernardis, F., Cassone, A., Sturtevant, J. & Calderone, R. ( 1995; ). Expression of Candida albicans SAP1 and SAP2 in experimental vaginitis. Infect Immun 63, 1887–1892.
    [Google Scholar]
  5. De Bernardis, F., Arancia, S., Morelli, L., Hube, B., Sanglard, D., Schafer, W. & Cassone, A. ( 1999; ). Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J Infect Dis 179, 201–208.[CrossRef]
    [Google Scholar]
  6. de Repentigny, L. ( 2004; ). Animal models in the analysis of Candida host–pathogen interactions. Curr Opin Microbiol 7, 324–329.[CrossRef]
    [Google Scholar]
  7. Dieterich, C., Schandar, M., Noll, M., Johannes, F. J., Brunner, H., Graeve, T. & Rupp, S. ( 2002; ). In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology 148, 497–506.
    [Google Scholar]
  8. Felk, A., Kretschmar, M., Albrecht, A., Schaller, M., Beinhauer, S., Nichterlein, T., Sanglard, D., Korting, H. C., Schafer, W. & Hube, B. ( 2002; ). Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70, 3689–3700.[CrossRef]
    [Google Scholar]
  9. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  10. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
    [Google Scholar]
  11. Hube, B., Monod, M., Schofield, D. A., Brown, A. J. & Gow, N. A. ( 1994; ). Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14, 87–99.[CrossRef]
    [Google Scholar]
  12. Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schafer, W., Brown, A. J. & Gow, N. A. ( 1997; ). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65, 3529–3538.
    [Google Scholar]
  13. Ibrahim, A. S., Filler, S. G., Sanglard, D., Edwards, J. E., Jr & Hube, B. ( 1998; ). Secreted aspartyl proteinases and interactions of Candida albicans with human endothelial cells. Infect Immun 66, 3003–3005.
    [Google Scholar]
  14. Köhler, G. A., White, T. C. & Agabian, N. ( 1997; ). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179, 2331–2338.
    [Google Scholar]
  15. Kretschmar, M., Hube, B., Bertsch, T., Sanglard, D., Merker, R., Schroder, M., Hof, H. & Nichterlein, T. ( 1999; ). Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immun 67, 6637–6642.
    [Google Scholar]
  16. Kwon-Chung, K. J., Lehman, D., Good, C. & Magee, P. T. ( 1985; ). Genetic evidence for role of extracellular proteinase in virulence of Candida albicans. Infect Immun 49, 571–575.
    [Google Scholar]
  17. Lay, J., Henry, L. K., Clifford, J., Koltin, Y., Bulawa, C. E. & Becker, J. M. ( 1998; ). Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66, 5301–5306.
    [Google Scholar]
  18. Macdonald, F. & Odds, F. C. ( 1983; ). Virulence for mice of a proteinase-secreting strain of Candida albicans and a proteinase-deficient mutant. J Gen Microbiol 129, 431–438.
    [Google Scholar]
  19. Millon, L., Manteaux, A., Reboux, G., Drobacheff, C., Monod, M., Barale, T. & Michel-Briand, Y. ( 1994; ). Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of Candida albicans strains with the same genotype. J Clin Microbiol 32, 1115–1118.
    [Google Scholar]
  20. Morschhäuser, J., Michel, S. & Hacker, J. ( 1998; ). Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Gen Genet 257, 412–420.[CrossRef]
    [Google Scholar]
  21. Naglik, J. R., Challacombe, S. J. & Hube, B. ( 2003a; ). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67, 400–428.[CrossRef]
    [Google Scholar]
  22. Naglik, J. R., Rodgers, C. A., Shirlaw, P. J., Dobbie, J. L., Fernandes-Naglik, L. L., Greenspan, D., Agabian, N. & Challacombe, S. J. ( 2003b; ). Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188, 469–479.[CrossRef]
    [Google Scholar]
  23. Naglik, J. R., Moyes, D., Makwana, J., Kanzaria, P., Tsichlaki, E., Weindl, G., Tappuni, A. R., Rodgers, C. A., Woodman, A. J. & other authors ( 2008; ). Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154, 3266–3280.[CrossRef]
    [Google Scholar]
  24. Odds, F. C. ( 1988; ). Candida and Candidosis: a Review and Bibliography. London, UK: Baillière Tindall.
  25. Phan, Q. T., Myers, C. L., Fu, Y., Sheppard, D. C., Yeaman, M. R., Welch, W. H., Ibrahim, A. S., Edwards, J. E., Jr & Filler, S. G. ( 2007; ). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5, e64 [CrossRef]
    [Google Scholar]
  26. Reuß, O., Vik, Å., Kolter, R. & Morschhäuser, J. ( 2004; ). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127.[CrossRef]
    [Google Scholar]
  27. Sanglard, D., Hube, B., Monod, M., Odds, F. C. & Gow, N. A. ( 1997; ). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539–3546.
    [Google Scholar]
  28. Schaller, M., Schafer, W., Korting, H. C. & Hube, B. ( 1998; ). Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29, 605–615.[CrossRef]
    [Google Scholar]
  29. Schaller, M., Korting, H. C., Schafer, W., Bastert, J., Chen, W. & Hube, B. ( 1999; ). Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34, 169–180.[CrossRef]
    [Google Scholar]
  30. Schaller, M., Bein, M., Korting, H. C., Baur, S., Hamm, G., Monod, M., Beinhauer, S. & Hube, B. ( 2003; ). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71, 3227–3234.[CrossRef]
    [Google Scholar]
  31. Schofield, D. A., Westwater, C., Warner, T., Nicholas, P. J., Paulling, E. E. & Balish, E. ( 2003; ). Hydrolytic gene expression during oroesophageal and gastric candidiasis in immunocompetent and immunodeficient gnotobiotic mice. J Infect Dis 188, 591–599.[CrossRef]
    [Google Scholar]
  32. Sharkey, L. L., Liao, W. L., Ghosh, A. K. & Fonzi, W. A. ( 2005; ). Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology 151, 1061–1071.[CrossRef]
    [Google Scholar]
  33. Staib, F. ( 1965; ). Serum-proteins as nitrogen source for yeastlike fungi. Sabouraudia 4, 187–193.
    [Google Scholar]
  34. Staib, F. ( 1969; ). Proteolysis and pathogenicity of Candida albicans strains. Mycopathol Mycol Appl 37, 345–348.[CrossRef]
    [Google Scholar]
  35. Staib, P., Kretschmar, M., Nichterlein, T., Köhler, G., Michel, S., Hof, H., Hacker, J. & Morschhäuser, J. ( 1999; ). Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 32, 533–546.[CrossRef]
    [Google Scholar]
  36. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H. & Morschhäuser, J. ( 2000; ). Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci U S A 97, 6102–6107.[CrossRef]
    [Google Scholar]
  37. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H. & Morschhäuser, J. ( 2002a; ). Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol Microbiol 44, 1351–1366.[CrossRef]
    [Google Scholar]
  38. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H. & Morschhäuser, J. ( 2002b; ). Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 70, 921–927.[CrossRef]
    [Google Scholar]
  39. Staib, P., Lermann, U., Blass-Warmuth, J., Degel, B., Würzner, R., Monod, M., Schirmeister, T. & Morschhäuser, J. ( 2008; ). Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 52, 146–156.[CrossRef]
    [Google Scholar]
  40. Strauß, A., Michel, S. & Morschhäuser, J. ( 2001; ). Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans. J Bacteriol 183, 3761–3769.[CrossRef]
    [Google Scholar]
  41. Taylor, B. N., Staib, P., Binder, A., Biesemeier, A., Sehnal, M., Röllinghoff, M., Morschhäuser, J. & Schröppel, K. ( 2005; ). Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun 73, 1828–1835.[CrossRef]
    [Google Scholar]
  42. Villar, C. C., Kashleva, H., Nobile, C. J., Mitchell, A. P. & Dongari-Bagtzoglou, A. ( 2007; ). Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 75, 2126–2135.[CrossRef]
    [Google Scholar]
  43. White, T. C. & Agabian, N. ( 1995; ). Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177, 5215–5221.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022525-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022525-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error