1887

Abstract

Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from K2, serotype 3 and increased the resistance to polymyxin B of an unencapsulated mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil -defensin 1 (HNP-1) for unencapsulated , and PAO1. Polymyxin B or HNP-1 released CPS from capsulated , serotype 3 and overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022301-0
2008-12-01
2020-05-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3877.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022301-0&mimeType=html&fmt=ahah

References

  1. Appleyard R. K.. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics39:440–452
    [Google Scholar]
  2. Arakawa Y., Wacharotayankun R., Nagatsuka T., Ito H., Kato N., Ohta M.. 1995; Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol177:1788–1796
    [Google Scholar]
  3. Arrecubieta C., Lopez R., Garcia E.. 1994; Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J Bacteriol176:6375–6383
    [Google Scholar]
  4. Beiter K., Wartha F., Hurwitz R., Normark S., Zychlinsky A., Henriques-Normark B.. 2008; The capsule sensitizes Streptococcus pneumoniae to neutrophil alpha-defensins HNP 1–3. Infect Immun76:3710–3716
    [Google Scholar]
  5. Bengoechea J. A., Lindner B., Seydel U., Díaz R., Moriyón I.. 1998; Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Microbiology144:1509–1515
    [Google Scholar]
  6. Bengoechea J. A., Najdenski H., Skurnik M.. 2004; Lipopolysaccharide O antigen status of Yersinia enterocolitica O: 8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol52:451–469
    [Google Scholar]
  7. Bitter T., Muir H. M.. 1962; A modified uronic acid carbazole reaction. Anal Biochem4:330–334
    [Google Scholar]
  8. Boucher J. C., Yu H., Mudd M. H., Deretic V.. 1997; Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun65:3838–3846
    [Google Scholar]
  9. Bragonzi A., Worlitzsch D., Pier G. B., Timpert P., Ulrich M., Hentzer M., Andersen J. B., Givskov M., Conese M., Doring G.. 2005; Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis192:410–419
    [Google Scholar]
  10. Brogden K. A.. 2005; Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol3:238–250
    [Google Scholar]
  11. Campos M. A., Vargas M. A., Regueiro V., Llompart C. M., Alberti S., Bengoechea J. A.. 2004; Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun72:7107–7114
    [Google Scholar]
  12. Campos M. A., Morey P., Bengoechea J. A.. 2006; Quinolones sensitize gram-negative bacteria to antimicrobial peptides. Antimicrob Agents Chemother50:2361–2367
    [Google Scholar]
  13. Cobb L. M., Mychaleckyj J. C., Wozniak D. J., Lopez-Boado Y. S.. 2004; Pseudomonas aeruginosa flagellin and alginate elicit very distinct gene expression patterns in airway epithelial cells: implications for cystic fibrosis disease. J Immunol173:5659–5670
    [Google Scholar]
  14. Corsaro M. M., De C. C., Naldi T., Parrilli M., Tomas J. M., Regue M.. 2005; 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145. Carbohydr Res340:2212–2217
    [Google Scholar]
  15. Díaz-Aparicio E., Aragón V., Marín C., Alonso B., Font M., Moreno E., Pérez-Ortiz S., Blasco J. M., Diaz R., Moriyón I.. 1993; Comparative analysis of Brucella serotype A and M and Yersinia enterocolitica O : 9 polysaccharides for serological diagnosis of brucellosis in cattle, sheep, and goats. J Clin Microbiol31:3136–3141
    [Google Scholar]
  16. Fresno S., Jimenez N., Izquierdo L., Merino S., Corsaro M. M., De C. C., Parrilli M., Naldi T., Regue M., Tomas J. M.. 2006; The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology152:1807–1818
    [Google Scholar]
  17. Frick I. M., Akesson P., Rasmussen M., Schmidtchen A., Bjorck L.. 2003; SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem278:16561–16566
    [Google Scholar]
  18. Ganz T.. 1987; Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun55:568–571
    [Google Scholar]
  19. Groisman E. A.. 1994; How bacteria resist killing by host-defence peptides. Trends Microbiol2:444–449
    [Google Scholar]
  20. Guina T., Yi E. C., Wang H., Hackett M., Miller S. I.. 2000; A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to α-helical antimicrobial peptides. J Bacteriol182:4077–4086
    [Google Scholar]
  21. Gunn J. S., Miller S. I.. 1996; Pho-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol178:6857–6864
    [Google Scholar]
  22. Gunn J. S., Lim K. B., Krueger J., Kim K., Guo L., Hackett M., Miller S. I.. 1998; PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol27:1171–1182
    [Google Scholar]
  23. Gutsmann T., Hagge S. O., David A., Roes S., Bohling A., Hammer M. U., Seydel U.. 2005; Lipid-mediated resistance of Gram-negative bacteria against various pore-forming antimicrobial peptides. J Endotoxin Res11:167–173
    [Google Scholar]
  24. Hancock R. E. W., Chapple D. S.. 1999; Peptide antibiotics. Antimicrob Agents Chemother43:1317–1323
    [Google Scholar]
  25. Hardy G. G., Caimano M. J., Yother J.. 2000; Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J Bacteriol182:1854–1863
    [Google Scholar]
  26. Jin T., Bokarewa M., Foster T., Mitchell J., Higgins J., Tarkowski A.. 2004; Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol172:1169–1176
    [Google Scholar]
  27. Kamerling J. P.. 2000; Pneumococcal polysaccharides: a chemical view. In Streptococcus Pneumoniae: Molecular Biology and Mechanisms of Disease pp81–114 Edited by Tomasz A. Larchmont, NY: Mary Ann Liebert;
    [Google Scholar]
  28. Lehrer R. I., Rosenman M., Harwig S. S., Jackson R., Eisenhauer P.. 1991; Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods137:167–173
    [Google Scholar]
  29. Link A. J., Phillips D., Church G. M.. 1997; Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol179:6228–6237
    [Google Scholar]
  30. Ma S., Selvaraj U., Ohman D. E., Quarless R., Hassett D. J., Wozniak D. J.. 1998; Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol180:956–968
    [Google Scholar]
  31. Mantovani A., Bonecchi R., Locati M.. 2006; Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol6:907–918
    [Google Scholar]
  32. Martin D. W., Schurr M. J., Mudd M. H., Govan J. R., Holloway B. W., Deretic V.. 1993; Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A90:8377–8381
    [Google Scholar]
  33. Moore R. A., Bates N. C., Hancock R. E.. 1986; Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother29:496–500
    [Google Scholar]
  34. Moskowitz S. M., Ernst R. K., Miller S. I.. 2004; PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol186:575–579
    [Google Scholar]
  35. Nassif X., Fournier J. M., Arondel J., Sansonetti P. J.. 1989; Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun57:546–552
    [Google Scholar]
  36. Newton B. A.. 1955; A fluorescent derivative of polymyxin: its preparation and use in studying the site of action of the antibiotic. J Gen Microbiol12:226–236
    [Google Scholar]
  37. Nicolas P., Mor A.. 1995; Peptides as weapons against microorganisms in the chemical defence system of vertebrates. Annu Rev Microbiol49:277–304
    [Google Scholar]
  38. Nizet V.. 2006; Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol8:11–26
    [Google Scholar]
  39. Peschel A.. 2002; How do bacteria resist human antimicrobial peptides?. Trends Microbiol10:179–186
    [Google Scholar]
  40. Poschet J. F., Boucher J. C., Firoved A. M., Deretic V.. 2001; Conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Methods Enzymol336:65–76
    [Google Scholar]
  41. Rahn A., Whitfield C.. 2003; Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis ( cps) gene cluster. Mol Microbiol47:1045–1060
    [Google Scholar]
  42. Regue M., Izquierdo L., Fresno S., Jimenez N., Pique N., Corsaro M. M., Parrilli M., Naldi T., Merino S., Tomas J. M.. 2005; The incorporation of glucosamine into enterobacterial core lipopolysaccharide: two enzymatic steps are required. J Biol Chem280:36648–36656
    [Google Scholar]
  43. Selsted M. E., Ouellette A. J.. 1995; Defensins in granules of phagocytic and non-phagocytic cells. Trends Cell Biol5:114–119
    [Google Scholar]
  44. Shafer W. M., Qu X., Waring A. J., Lehrer R. I.. 1998; Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A95:1829–1833
    [Google Scholar]
  45. Sherbrock-Cox V., Russell N. J., Gacesa P.. 1984; The purification and chemical characterisation of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa. Carbohydr Res135:147–154
    [Google Scholar]
  46. Spinosa M. R., Progida C., Tala A., Cogli L., Alifano P., Bucci C.. 2007; The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun75:3594–3603
    [Google Scholar]
  47. Steinmoen H., Knutsen E., Havarstein L. S.. 2002; Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A99:7681–7686
    [Google Scholar]
  48. Steinmoen H., Teigen A., Havarstein L. S.. 2003; Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J Bacteriol185:7176–7183
    [Google Scholar]
  49. Straus D. C., Atkisson D. L., Garner C. W.. 1985; Importance of a lipopolysaccharide-containing extracellular toxic complex in infections produced by Klebsiella pneumoniae. Infect Immun50:787–795
    [Google Scholar]
  50. Takemura H., Kaku M., Kohno S., Hirakata Y., Tanaka H., Yoshida R., Tomono K., Koga H., Wada A.. other authors 1996; Evaluation of susceptibility of gram-positive and -negative bacteria to human defensins by using radial diffusion assay. Antimicrob Agents Chemother40:2280–2284
    [Google Scholar]
  51. Vaara M.. 1992; Agents that increase the permeability of the outer membrane. Microbiol Rev56:395–411
    [Google Scholar]
  52. Ventura C. L., Cartee R. T., Forsee W. T., Yother J.. 2006; Control of capsular polysaccharide chain length by UDP-sugar substrate concentrations in Streptococcus pneumoniae. Mol Microbiol61:723–733
    [Google Scholar]
  53. Westphal O., Jann K.. 1963; Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem5:83–91
    [Google Scholar]
  54. Wiese A., Gutsmann T., Seydel U.. 2003; Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. J Endotoxin Res9:67–84
    [Google Scholar]
  55. Zilbauer M., Dorrell N., Boughan P. K., Harris A., Wren B. W., Klein N. J., Bajaj-Elliott M.. 2005; Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun73:7281–7289
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022301-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022301-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error