1887

Abstract

An endophytic fungus, (NRRL 50072), produced a series of volatile hydrocarbons and hydrocarbon derivatives on an oatmeal-based agar under microaerophilic conditions as analysed by solid-phase micro-extraction (SPME)-GC/MS. As an example, this organism produced an extensive series of the acetic acid esters of straight-chained alkanes including those of pentyl, hexyl, heptyl, octyl, sec-octyl and decyl alcohols. Other hydrocarbons were also produced by this organism, including undecane, 2,6-dimethyl; decane, 3,3,5-trimethyl; cyclohexene, 4-methyl; decane, 3,3,6-trimethyl; and undecane, 4,4-dimethyl. Volatile hydrocarbons were also produced on a cellulose-based medium, including heptane, octane, benzene, and some branched hydrocarbons. An extract of the host plant, (ulmo), supported the growth and hydrocarbon production of this fungus. Quantification of volatile organic compounds, as measured by proton transfer mass spectrometry (PTR-MS), indicated a level of organic substances in the order of 80 p.p.m.v. (parts per million by volume) in the air space above the oatmeal agar medium in an 18 day old culture. Scaling the PTR-MS profile the acetic acid heptyl ester was quantified (at 500 p.p.b.v.) and subsequently the amount of each compound in the GC/MS profile could be estimated; all yielded a total value of about 4.0 p.p.m.v. The hydrocarbon profile of contains a number of compounds normally associated with diesel fuel and so the volatiles of this fungus have been dubbed ‘myco-diesel’. Extraction of liquid cultures of the fungus revealed the presence of numerous fatty acids and other lipids. All of these findings have implications in energy production and utilization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022186-0
2008-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3319.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022186-0&mimeType=html&fmt=ahah

References

  1. Bunge, M., Araghipour, N., Mikoviny, T., Dunkl, J., Schnitzhofer, R., Hanzel, A., Schinner, F., Wisthaler, A., Margesin, R. & Tilmann, M. D. ( 2008; ). On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectroscopy. Appl Environ Microbiol 74, 2179–2186.[CrossRef]
    [Google Scholar]
  2. Cardellina, J. H. ( 1991; ). HPLC separation of taxol and cephalomannine. J Liq Chromatogr 14, 659–665.[CrossRef]
    [Google Scholar]
  3. Cavill, J., Elliott, R. L., Evans, G., Jones, I. L., Platts, J. A., Ruda, A. M. & Tomkinson, N. O. ( 2006; ). The α-effect in iminium ion catalysis. Tetrahedron 62, 410–421.[CrossRef]
    [Google Scholar]
  4. Chen, J. T. & Huang, J. W. ( 2004; ). Identification of Gliocladium roseum, the causal agent of brown spot of kind oyster mushroom Pleurotus eryngii. Plant Pathol Bull 13, 17–26.
    [Google Scholar]
  5. Danner, H. & Braun, R. ( 1999; ). Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28, 395–405.[CrossRef]
    [Google Scholar]
  6. Ezra, D., Hess, W. M. & Strobel, G. A. ( 2004a; ). New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150, 4023–4031.[CrossRef]
    [Google Scholar]
  7. Ezra, D., Jasper, J., Rogers, T., Knighton, B., Grimsrud, E. & Strobel, G. A. ( 2004b; ). Proton-transfer reaction-mass spectroscopy as a technique to measure volatile emissions of Muscodor albus. Plant Sci 166, 1471–1477.[CrossRef]
    [Google Scholar]
  8. Hanlin, R. T. ( 1997; ). Illustrated Genera of Ascomycetes. St Paul, MS: American Phytopathological Society.
  9. Hatzakis, N. S. & Smonou, I. ( 2005; ). Asymmetric transesterification of secondary alcohols catalyzed by feruloyl esterase from Humicola insolens. Bioorg Chem 33, 325–337.[CrossRef]
    [Google Scholar]
  10. Ladygina, N., Dedyukhina, E. G. & Vainshtein, M. B. ( 2006; ). A review on microbial synthesis of hydrocarbons. Process Biochem 41, 1001–1014.[CrossRef]
    [Google Scholar]
  11. Lindinger, W., Hansel, A. & Jordan, A. ( 1998; ). On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173, 191–241.[CrossRef]
    [Google Scholar]
  12. McAfee, B. J. & Taylor, A. ( 1999; ). A review of the volatile metabolites of fungi found on wood substrates. Nat Toxins 7, 283–303.[CrossRef]
    [Google Scholar]
  13. Mercier, J. & Jimenez, J. ( 2007; ). Potential of the volatile-producing fungus Muscodor albus for the control of building molds. Can J Microbiol 53, 404–410.[CrossRef]
    [Google Scholar]
  14. Pinkerton, F. & Strobel, G. A. ( 1976; ). Serinol as an activator of toxin production in attenuated cultures of Helminthosporium sacchari. Proc Natl Acad Sci U S A 73, 4007–4011 (USA).[CrossRef]
    [Google Scholar]
  15. Seifert, K. A. ( 1989; ). Coryne trichophora, comb. nov., and the implications of its conidiomatal anatomy. Stud Mycol 31, 157–164.
    [Google Scholar]
  16. Stahl, E. ( 1969; ). Thin Layer Chromatography: a Laboratory Handbook. Springer.
  17. Stinson, M., Ezra, D., Hess, W. M., Sears, J. & Strobel, G. A. ( 2003; ). An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165, 913–922.[CrossRef]
    [Google Scholar]
  18. Strobel, G. A. ( 2006; ). Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33, 514–522.[CrossRef]
    [Google Scholar]
  19. Strobel, G. A. & Daisy, B. ( 2003; ). Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67, 491–502.[CrossRef]
    [Google Scholar]
  20. Strobel, G. A., Dirksie, E., Sears, J. & Markworth, C. ( 2001; ). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147, 2943–2950.
    [Google Scholar]
  21. Strobel, G. A., Kluck, K., Hess, W. M., Sears, J., Ezra, D. & Vargas, P. N. ( 2007; ). Muscodor albus E-6, an endophyte of Guazuma ulmifolia, making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153, 2613–2620.[CrossRef]
    [Google Scholar]
  22. Sunesson, A.-L., Vaes, W. H. J., Nilsson, C. A., Blomquist, G., Andersson, B. & Carlson, R. ( 1995; ). Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61, 2911–2918.
    [Google Scholar]
  23. Worapong, J., Strobel, G. A., Ford, E. J., Li, J. Y., Baird, G. & Hess, W. M. ( 2001; ). Muscodor albus anam. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon 79, 67–79.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022186-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022186-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error