1887

Abstract

Predicted members of the HflX subfamily of phosphate-binding-loop guanosine triphosphatases (GTPases) are widely distributed in the bacterial kingdom but remain virtually uncharacterized. In an attempt to understand mechanisms used for regulation of growth and development in the chlamydiae, obligate intracellular and developmentally complex bacteria, we have begun investigations into chlamydial GTPases; we report here what appears to be the first analysis of a HflX family GTPase using a predicted homologue from . In agreement with phylogenetic predictions for members of this GTPase family, purified recombinant HflX was specific for guanine nucleotides and exhibited a slow intrinsic GTPase activity when incubated with [-P]GTP. Using HflX-specific monoclonal antibodies, HflX could be detected by Western blotting and high-resolution confocal microscopy throughout the vegetative growth cycle of and, at early time points, appeared to partly localize to the membrane. Ectopic expression of HflX in revealed co-sedimentation of HflX with the 50S large ribosomal subunit. The results of this work open up some intriguing possibilities for the role of GTPases belonging to this previously uncharacterized family of bacterial GTPases. Ribosome association is a feature shared by other important conserved GTPase families and more detailed investigations will be required to delineate the role of HflX in bacterial ribosome function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022137-0
2008-11-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3537.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022137-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Belland R. J., Nelson D. E., Virok D., Crane D. D., Hogan D., Sturdevant D., Beatty W. L., Caldwell H. D.. 2003; Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci U S A100:15971–15976
    [Google Scholar]
  3. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K.. other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1462
    [Google Scholar]
  4. Bourne H. R., Sanders D. A., McCormick F.. 1991; The GTPase superfamily: conserved structure and molecular mechanism. Nature349:117–127
    [Google Scholar]
  5. Brown E. D.. 2005; Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol83:738–746
    [Google Scholar]
  6. Buglino J., Shen V., Hakimian P., Lima C. D.. 2002; Structural and biochemical analysis of the Obg GTP binding protein. Structure10:1581–1592
    [Google Scholar]
  7. Caldon C. E., March P. E.. 2003; Function of the universally conserved bacterial GTPases. Curr Opin Microbiol6:135–139
    [Google Scholar]
  8. Caldon C. E., Yoong P., March P. E.. 2001; Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol41:289–297
    [Google Scholar]
  9. Campbell L. A., Kuo C. C.. 2004; Chlamydia pneumoniae – an infectious risk factor for atherosclerosis?. Nat Rev Microbiol2:23–32
    [Google Scholar]
  10. Clanton D. J., Hattori S., Shih T. Y.. 1986; Mutations of the ras gene product p21 that abolish guanine nucleotide binding. Proc Natl Acad Sci U S A83:5076–5080
    [Google Scholar]
  11. Datta K., Skidmore J. M., Pu K., Maddock J. R.. 2004; The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaing 50S ribosomal subunit levels. Mol Microbiol54:1379–1392
    [Google Scholar]
  12. Debattista J., Timms P., Allan J., Allan J.. 2003; Immunopathogenesis of Chlamydia trachomatis infections in women. Fertil Steril79:1273–1287
    [Google Scholar]
  13. Engels S., Ludwig C., Schweitzer J. E., Mack C., Bott M., Schaffer S.. 2005; The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol57:576–591
    [Google Scholar]
  14. Ferber P. C., Ossent P., Homberger F. R., Fischer R. W.. 1999; The generation of monoclonal antibodies in mice: influence of adjuvants on the immune response, fusion efficiency and distress. Lab Anim33:334–350
    [Google Scholar]
  15. Gambhir M., Basáñez M. G., Turner F., Kumaresan J., Grassly N. C.. 2007; Trachoma: transmission, infection and control. Lancet Infect Dis7:420–427
    [Google Scholar]
  16. Gèrard H. C., Dreses-Werringloer U., Wildt K. S., Deka S., Oszust C., Balin B. J., Frey W. H. II, Bordayo E. Z., Whittum-Hudson J. A., Hudson A. P.. 2006; Chlamydophila ( Chlamydia) pneumoniae in the Alzheimer's brain. FEMS Immunol Med Microbiol48:355–366
    [Google Scholar]
  17. Gerdes S. Y., Scholle M. D., Campbell J. W., Balazsi G., Ravasz E., Daughterty M. D., Somera A. L., Kyrpides N. C., Anderson I.. other authors 2003; Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol185:5673–5684
    [Google Scholar]
  18. Grayston J. T., Kuo C. C., Wang S. P., Altman J.. 1986; A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med315:161–168
    [Google Scholar]
  19. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  20. Hwang J., Inouye M.. 2001; An essential GTPase, Der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J Biol Chem276:31415–31421
    [Google Scholar]
  21. Jiang M., Datta K., Walker A., Strahler J., Bagamasbad P., Andrews P. C., Maddock J. R.. 2006; The Escherichia coli GTPase CgtAE is involved in the late steps of large ribosome assembly. J Bacteriol188:6757–6770
    [Google Scholar]
  22. John J., Rensland H., Schlichting I., Vetter I., Borasion G. D., Goody R. S., Wittinghofer A.. 1993; Kinetic and structural analysis of the Mg2+-binding site of the guanine nucleotide-binding protein p21H-ras. J Biol Chem268:923–929
    [Google Scholar]
  23. Kihara A., Akiyama Y., Ito K.. 1997; Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA. Proc Natl Acad Sci U S A94:5544–5549
    [Google Scholar]
  24. Kobayashi G., Moriya S., Wada C.. 2001; Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol Microbiol41:1037–1051
    [Google Scholar]
  25. Koehler L., Nettelnbreker E., Hudson A. P., Ott N., Gérard H. C., Branigan P. J., Schumacher H. R., Drommer W., Zeidler H.. 1997; Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes. Microb Pathog22:133–142
    [Google Scholar]
  26. Kutlin A., Flegg C., Stenzel D., Reznik T., Roblin P. M., Mathews S., Timms P., Hammerschlag M. R.. 2001; Ultrastructural study of Chlamydia pneumoniae in a continuous-infection model. J Clin Microbiol39:3721–3723
    [Google Scholar]
  27. Leipe D. D., Wolf Y. I., Koonin E. V., Aravind L.. 2002; Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol317:41–72
    [Google Scholar]
  28. Lin B., Covalle K. L., Maddock J. R.. 1999; The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol181:5825–5832
    [Google Scholar]
  29. Lin B., Thayer D. A., Maddock J. R.. 2004; The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit. J Bacteriol186:481–489
    [Google Scholar]
  30. Noble J. A., Innis M. A., Koonin E. V., Rudd K. E., Banuett F., Herskowitz I.. 1993; The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain. Proc Natl Acad Sci U S A90:10866–10870
    [Google Scholar]
  31. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A.. 1990; Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J9:2351–2359
    [Google Scholar]
  32. Park J. H., Jensen B. C., Kifer C. T., Parsons M.. 2001; A novel nucleolar G-protein conserved in eukaryotes. J Cell Sci114:173–185
    [Google Scholar]
  33. Polkinghorne A., Hogan R. J., Vaughan L., Summersgill J. T., Timms P.. 2006; Differential expression of chlamydial signal transduction genes in normal and interferon gamma-induced persistent Chlamydophila pneumoniae infections. Microbes Infect8:61–72
    [Google Scholar]
  34. Sato A., Kobayashi G., Hayashi H., Yoshida H., Wada A., Maeda M., Hiraga S., Takeyasu K., Wada C.. 2005; The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells10:393–408
    [Google Scholar]
  35. Shotland Y., Koby S., Teff D., Mansur N., Oren D. A., Tatematsu K., Tomoyasu T., Kessel M., Bukau B.. other authors 1997; Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol24:1303–1310
    [Google Scholar]
  36. Silveira L. H., Gutierrez F., Scopelitis E., Cuellar M. L., Citera G., Espinoza L. R.. 1993; Chlamydia-induced reactive arthritis. Rheum Dis Clin North Am19:351–362
    [Google Scholar]
  37. Sprang S. R.. 1997; G proteins, effectors and GAPs: structure and mechanism. Curr Opin Struct Biol7:849–856
    [Google Scholar]
  38. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L.. other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science282:754–759
    [Google Scholar]
  39. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89
    [Google Scholar]
  40. Tamura A.. 1967; Isolation of ribosome particles from meningopneumonitis organisms. J Bacteriol93:2009–2016
    [Google Scholar]
  41. Welsh K. M., Trach K. A., Folger C., Hoch J. A.. 1994; Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis. J Bacteriol176:7161–7168
    [Google Scholar]
  42. Wout P., Pu K., Sullivan S. M., Reese V., Zhou S., Lin B., Maddock J. R.. 2004; The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol186:5249–5257
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022137-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022137-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error