1887

Abstract

The double strand-specific endoRNase RNase III globally regulates the production of antibiotics by . We have undertaken studies to determine whether the endoRNase activity of RNase III or its RNA binding activity is responsible for its regulatory function. We show that an null mutant of M145 does not produce actinorhodin or undecylprodigiosin. Restoring a wild-type copy of to that mutant also restored antibiotic production. We constructed an point mutant, D70A, in which an aspartic acid residue which is essential for the catalytic activity of RNase III was changed to alanine. The D70A mutation abolished the catalytic activity of the protein but not its ability to bind to RNA substrates. Introduction of a copy of the D70A gene into the null mutant did not restore antibiotic production. This result suggests that the endoRNase activity of RNase III is required for the regulation of antibiotic production in . We also reconstructed the C120 point mutation that was originally described in 1992. Although that mutation diminished antibiotic production by , we confirm here that the C120 protein retains some RNase III activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022095-0
2008-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3547.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022095-0&mimeType=html&fmt=ahah

References

  1. Aceti, D. J. & Champness, W. ( 1998; ). Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J Bacteriol 180, 3100–3106.
    [Google Scholar]
  2. Adamidis, T. & Champness, W. ( 1992; ). Genetic analysis of absB, a Streptomyces coelicolor locus involved in global antibiotic regulation. J Bacteriol 174, 4622–4628.
    [Google Scholar]
  3. Bardwell, J. C., Regnier, P., Chen, S. M., Nakamura, Y., Grunberg-Manago, M. & Court, D. L. ( 1989; ). Autoregulation of RNase III operon by mRNA processing. EMBO J 8, 3401–3407.
    [Google Scholar]
  4. Bibb, M. J. ( 1996; ). 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142, 1335–1344.[CrossRef]
    [Google Scholar]
  5. Bibb, M. J. ( 2005; ). Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8, 208–215.[CrossRef]
    [Google Scholar]
  6. Blaszczyk, J., Gan, J., Tropea, J. E., Court, D. L., Waugh, D. S. & Ji, X. ( 2004; ). Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 12, 457–466.[CrossRef]
    [Google Scholar]
  7. Bralley, P. & Jones, G. H. ( 2003; ). Overexpression of the polynucleotide phosphorylase gene (pnp) of Streptomyces antibioticus affects mRNA stability and poly(A) tail length but not ppGpp levels. Microbiology 149, 2173–2182.[CrossRef]
    [Google Scholar]
  8. Chang, S. A., Bralley, P. & Jones, G. H. ( 2005; ). The absB gene encodes a double-strand specific endoribonuclease that cleaves the readthrough transcript of the rspO-pnp operon in Streptomyces coelicolor. J Biol Chem 280, 33213–33219.[CrossRef]
    [Google Scholar]
  9. Chang, S. A., Cozad, M., Mackie, G. A. & Jones, G. H. ( 2008; ). Kinetics of polynucleotide phosphorylase: comparison of enzymes from Streptomyces and Escherichia coli and effects of nucleoside diphosphates. J Bacteriol 190, 98–106.[CrossRef]
    [Google Scholar]
  10. Chater, K. F. & Hopwood, D. A. ( 1989; ). Antibiotic biosynthesis in Streptomyces. In Genetics of Bacterial Diversity, pp. 129–150. Edited by D. A. Hopwood & K. F. Chater. London: Academic Press.
  11. Dasgupta, S., Fernandez, L., Kameyama, L., Inada, T., Nakamura, Y., Pappas, A. & Court, D. L. ( 1998; ). Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III – the effect of dsRNA binding on gene expression. Mol Microbiol 28, 629–640.[CrossRef]
    [Google Scholar]
  12. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  13. Drider, D. & Condon, C. ( 2004; ). The continuing story of endoribonuclease III. J Mol Microbiol Biotechnol 8, 195–200.[CrossRef]
    [Google Scholar]
  14. Flett, F., Mersinias, V. & Smith, C. P. ( 1997; ). High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155, 223–229.[CrossRef]
    [Google Scholar]
  15. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. ( 2003; ). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541–1546.[CrossRef]
    [Google Scholar]
  16. Hillerich, B. & Westpheling, J. ( 2008; ). A new TetR family transcriptional regulator required for morphogenesis in Streptomyces coelicolor. J Bacteriol 190, 61–67.[CrossRef]
    [Google Scholar]
  17. Huang, J., Shi, J., Molle, V., Sohlberg, B., Weaver, D., Bibb, M J., Karoonuthaisiri, N., Lih, C J., Kao, C. M. & other authors ( 2005a; ). Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58, 1276–1287.[CrossRef]
    [Google Scholar]
  18. Huang, J., Shi, J., Molle, V., Sohlberg, B., Weaver, D., Bibb, M. J., Karoonuthaisiri, N., Lih, C. J., Kao, C. M. & other authors ( 2005b; ). Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58, 1276–1287.[CrossRef]
    [Google Scholar]
  19. Jarrige, A.-C., Mathy, N. & Portier, C. ( 2001; ). PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J 20, 6845–6855.[CrossRef]
    [Google Scholar]
  20. Ji, X. ( 2006; ). Structural basis for non-catalytic and catalytic activities of ribonuclease III. Acta Crystallogr D62, 933–940.
    [Google Scholar]
  21. Kieser, Y., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: The John Innes Foundation.
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Matsunaga, J., Simons, E. L. & Simons, R. W. ( 1996; ). RNase III autoregulation: structure and function of rncO, the posttranscriptional “operator”. RNA 2, 1228–1240.
    [Google Scholar]
  24. Matsunaga, J., Simons, E. L. & Simons, R. W. ( 1997; ). Escherichia coli RNase III (rnc) autoregulation occurs independently of rnc gene translation. Mol Microbiol 26, 1125–1135.[CrossRef]
    [Google Scholar]
  25. Nicholson, A. W. ( 1999; ). Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23, 371–390.[CrossRef]
    [Google Scholar]
  26. Oppenheim, A. B., Kornitzer, D., Altuvia, S. & Court, D. L. ( 1993; ). Posttranscriptional control of the lysogenic pathway in bacteriophage lambda. Prog Nucleic Acid Res Mol Biol 46, 37–49.
    [Google Scholar]
  27. Price, B., Adamis, T. & Champness, W. ( 1999; ). A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J Bacteriol 181, 6142–6151.
    [Google Scholar]
  28. Robert-Le Meur, M. & Portier, C. ( 1992; ). E. coli polynucleotide phosphorylase expression is autoregulated through an RNAase III-dependent mechanism. EMBO J 11, 2633–2641.
    [Google Scholar]
  29. Robert-Le Meur, M. & Portier, C. ( 1994; ). Polynucleotide phosphorylase of Escherichia coli induces degradation of its RNase III processed messenger by preventing its translation. Nucleic Acids Res 22, 397–403.[CrossRef]
    [Google Scholar]
  30. Rodriguez-Garcia, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A. & Martin, J. F. ( 2007; ). Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7, 2410–2429.[CrossRef]
    [Google Scholar]
  31. Sello, J. K. & Buttner, M. J. ( 2008; ). The gene encoding ribonuclease III in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and proper sporulation. J Bacteriol 190, 4079–4083.[CrossRef]
    [Google Scholar]
  32. Sun, J., Kelemen, G. H., Fernandez-Abalos, J. M. & Bibb, M. J. ( 1999; ). Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145, 2221–2227.
    [Google Scholar]
  33. Sun, W., Li, G. & Nicholson, A. W. ( 2004; ). Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro. Biochemistry 43, 13054–13062.[CrossRef]
    [Google Scholar]
  34. Xu, W., Huang, J. & Cohen, S. N. ( 2008; ). Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J Bacteriol 190, 5526–5530.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022095-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022095-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error