Carbon source-dependent modulation of NADP-glutamate dehydrogenases in isophthalate-degrading strain PP4, strain PPD and strain ISP4 Free

Abstract

strain ISP4 metabolizes isophthalate rapidly compared with strain PP4 and strain PPD. Isophthalate has been reported to be a potent competitive inhibitor of glutamate dehydrogenase (GDH). Exogenous supplementation of isophthalate with glutamate or -ketoglutarate at 1 mM concentration caused strains PP4 and PPD to grow faster than in the presence of isophthalate alone; however, no such effect was observed in strain ISP4. When grown on isophthalate, all strains showed activity of NADP-dependent GDH (NADP-GDH), while cells grown on glucose, 2× yeast extract-tryptone broth (2YT) or glutamate showed activities of both NAD-dependent GDH (NAD-GDH) and NADP-GDH. Activity staining, inhibition and thermal stability studies indicated the carbon source-dependent presence of two (GDH and GDH), three (GDH, GDH and GDH) and one (GDH) forms of NADP-GDH in strains PP4, PPD and ISP4, respectively. The results demonstrate the carbon source-dependent modulation of different forms of NADP-GDH in these bacterial strains. This modulation may help the efficient utilization of isophthalate as a carbon source by overcoming the inhibitory effect on GDH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022087-0
2008-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3329.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022087-0&mimeType=html&fmt=ahah

References

  1. Abrahams G. L., Abratt V. R. 1998; The NADH-dependent glutamate dehydrogenase enzyme of Bacteroides fragilis Bf1 is induced by peptides in the growth medium. Microbiology 144:1659–1667
    [Google Scholar]
  2. Ballou D., Batie C. 1988; Phthalate oxygenase, a Rieske iron-sulfur protein from Pseudomonas cepacia . Prog Clin Biol Res 274:211–226
    [Google Scholar]
  3. Basu A., Dixit S. S., Phale P. S. 2003; Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol 62:579–585
    [Google Scholar]
  4. Batie C. J., LaHaie E., Ballou D. P. 1987; Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia . J Biol Chem 262:1510–1518
    [Google Scholar]
  5. Bellion E., Tan F. 1984; NADP-dependent glutamate dehydrogenase from a facultative methylotroph, Pseudomonas sp. strain AM1. J Bacteriol 157:435–439
    [Google Scholar]
  6. Bonete M. J., Camacho M. L., Cadenas E. 1990; Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase. Biochim Biophys Acta 1041:305–310
    [Google Scholar]
  7. Bonete M. J., Perez-Pomares F., Diaz S., Ferrer J., Oren A. 2003; Occurrence of two different glutamate dehydrogenase activities in the halophilic bacterium Salinibacter ruber . FEMS Microbiol Lett 226:181–186
    [Google Scholar]
  8. Boots S. G., Franklin M. A., Dunlavey B., Costello J., Lipsitz C., Boots M. R., Rogers K. S. 1976; Synthesis of 5-substituted isophthalic acids and competitive inhibition studies with bovine liver glutamate dehydrogenase. Proc Soc Exp Biol Med 151:316–320
    [Google Scholar]
  9. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  10. Brown C. M., Macdonald-Brown D. S., Stanley S. O. 1973; The mechanisms of nitrogen assimilation in pseudomonads. Antonie Van Leeuwenhoek 39:89–98
    [Google Scholar]
  11. Camardella L., Di Fraia R., Antignani A., Ciardiello M. A., di Prisco G., Coleman J. K., Buchon L., Guespin J., Russell N. J. 2002; The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Comp Biochem Physiol A Mol Integr Physiol 131:559–567
    [Google Scholar]
  12. Caughey W. S., Hellerman L., Smiley J. D. 1957; l-Glutamic acid dehydrogenase; structural requirements for substrate competition; effect of thyroxine. J Biol Chem 224:591–607
    [Google Scholar]
  13. Chatterjee S., Dutta T. K. 2003; Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309:36–43
    [Google Scholar]
  14. Cunliffe D., Leason M., Parkin D., Lea P. J. 1983; The inhibition of glutamate dehydrogenase by derivatives of isophthalic acid. Phytochemistry 22:1357–1360
    [Google Scholar]
  15. Deluna A., Avendano A., Riego L., Gonzalez A. 2001; NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783
    [Google Scholar]
  16. Dillingham E. O., Autian J. 1973; Teratogenicity, mutagenicity, and cellular toxicity of phthalate esters. Environ Health Perspect 3:81–89
    [Google Scholar]
  17. Eaton R. W. 2001; Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703
    [Google Scholar]
  18. Eaton R. W., Ribbons D. W. 1982; Metabolism of dimethylphthalate by Micrococcus sp. strain 12B. J Bacteriol 151:465–467
    [Google Scholar]
  19. Garnier A., Berredjem A., Botton B. 1997; Purification and characterization of the NAD-dependent glutamate dehydrogenase in the ectomycorrhizal fungus Laccaria bicolor (Maire) orton. Fungal Genet Biol 22:168–176
    [Google Scholar]
  20. Gesler R. M. 1973; Toxicology of di-2-ethylhexyl phthalate and other phthalic acid ester plasticizers. Environ Health Perspect 3:73–79
    [Google Scholar]
  21. Hudson R. C., Daniel R. M. 1993; l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792
    [Google Scholar]
  22. Jaeger R. J., Rubin R. J. 1973; Extraction, localization, and metabolism of di-2-ethylhexyl phthalate from PVC plastic medical devices. Environ Health Perspect 3:95–102
    [Google Scholar]
  23. Keyser P., Pujar B. G., Eaton R. W., Ribbons D. W. 1976; Biodegradation of the phthalates and their esters by bacteria. Environ Health Perspect 18:159–166
    [Google Scholar]
  24. Koch H. M., Drexler H., Angerer J. 2003; An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83
    [Google Scholar]
  25. Krauskopf L. G. 1973; Studies on the toxicity of phthalates via ingestion. Environ Health Perspect 3:61–72
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  27. LeJohn H. B., Jackson S. 1968; Allosteric interactions of a regulatory nicotinamide adenine dinucleotide-specific glutamate dehydrogenase from Blastocladiella. A molecular model for the enzyme. J Biol Chem 243:3447–3457
    [Google Scholar]
  28. LeJohn H. B., McCrea B. E. 1968; Evidence for two species of glutamate dehydrogenases in Thiobacillus novellus . J Bacteriol 95:87–94
    [Google Scholar]
  29. Lu C. D., Abdelal A. T. 2001; The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD+-dependent glutamate dehydrogenase which is subject to allosteric regulation. J Bacteriol 183:490–499
    [Google Scholar]
  30. Maurizi M. R., Rasulova F. 2002; Degradation of l-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability. Arch Biochem Biophys 397:206–216
    [Google Scholar]
  31. Moyano E., Cardenas J., Muñoz-Blanco J. 1992; Purification and properties of three NAD(P)+ isozymes of l-glutamate dehydrogenase of Chlamydomonas reinhardtii . Biochim Biophys Acta 111963–68
    [Google Scholar]
  32. Muñoz-Blanco J., Moyano E., Cárdenas J. 1989; Glutamate dehydrogenase isozymes of Chlamydomonas reinhardtii . FEMS Microbiol Lett 61:315–318
    [Google Scholar]
  33. Noor S., Punekar N. S. 2005; Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon–nitrogen interface. Microbiology 151:1409–1419
    [Google Scholar]
  34. Pagliarulo C., Salvatore P., De Vitis L. R., Colicchio R., Monaco C., Tredici M., Tala A., Bardaro M., Lavitola A. other authors 2004; Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 51:1757–1772
    [Google Scholar]
  35. Phale P. S., Basu A., Majhi P. D., Deveryshetty J., Vamsee-Krishna C., Shrivastava R. 2007; Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11:252–279
    [Google Scholar]
  36. Quan C. S., Liu Q., Tian W. J., Kikuchi J., Fan S. D. 2005; Biodegradation of an endocrine-disrupting chemical, di-2-ethylhexyl phthalate, by Bacillus subtilis No. 66. Appl Microbiol Biotechnol 66:702–710
    [Google Scholar]
  37. Rogers K. S., Boots M. R., Boots S. G. 1972; Molecular interactions of six aromatic competitive inhibitors with bovine liver glutamate dehydrogenase. Biochim Biophys Acta 258:343–350
    [Google Scholar]
  38. Rubin R. J., Jaeger R. J. 1973; Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Health Perspect 3:53–59
    [Google Scholar]
  39. Schinkinger M. F., Redl B., Stoffler G. 1991; Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus . Biochim Biophys Acta 1073:142–148
    [Google Scholar]
  40. Schlafli H. R., Weiss M. A., Leisinger T., Cook A. M. 1994; Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176:6644–6652
    [Google Scholar]
  41. Shigematsu T., Yumihara K., Ueda Y., Numaguchi M., Morimura S., Kida K. 2003; Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53:1479–1483
    [Google Scholar]
  42. Smith T. J., Peterson P. E., Schmidt T., Fang J., Stanley C. A. 2001; Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307:707–720
    [Google Scholar]
  43. Smith T. J., Schmidt T., Fang J., Wu J., Siuzdak G., Stanley C. A. 2002; The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318:765–777
    [Google Scholar]
  44. Smits R. A., Pieper F. R., van der Drift C. 1984; Purification of NADP-dependent glutamate dehydrogenase from Pseudomonas aeruginosa and immunochemical characterization of its in vivo inactivation. Biochim Biophys Acta 801:32–39
    [Google Scholar]
  45. Stevens L., Duncan D., Robertson P. 1989; Purification and characterisation of NAD-glutamate dehydrogenase from Aspergillus nidulans . FEMS Microbiol Lett 48:173–177
    [Google Scholar]
  46. Syed S. E., Engel P. C., Parker D. M. 1991; Functional studies of a glutamate dehydrogenase with known three-dimensional structure: steady-state kinetics of the forward and reverse reactions catalysed by the NAD+-dependent glutamate dehydrogenase of Clostridium symbiosum . Biochim Biophys Acta 1115123–130
    [Google Scholar]
  47. Tarasev M., Ballou D. P. 2005; Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry 44:6197–6207
    [Google Scholar]
  48. Tepper L. B. 1973; Phthalic acid esters – an overview. Environ Health Perspect 3:179–182
    [Google Scholar]
  49. Vamsee-Krishna C., Phale P. S. 2008; Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48:19–34
    [Google Scholar]
  50. Vamsee-Krishna C., Mohan Y., Phale P. S. 2006; Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72:1263–1269
    [Google Scholar]
  51. Wang Y. Z., Zhou Y., Zylstra G. J. 1995; Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103:9–12
    [Google Scholar]
  52. Wang Y., Fan Y., Gu J. D. 2003; Microbial degradation of the endocrine-disrupting chemicals phthalic acid and dimethyl phthalate ester under aerobic conditions. Bull Environ Contam Toxicol 71:810–818
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022087-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022087-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed