1887

Abstract

The oomycete potato late blight pathogen, , and the apicomplexan malaria parasite translocate effector proteins inside host cells, presumably to the benefit of the pathogen or parasite. Many oomycete candidate secreted effector proteins possess a peptide domain with the core conserved motif, RxLR, located near the N-terminal secretion signal peptide. In the effector Avr3a, RxLR and an additional EER motif are essential for translocation into host cells during infection. Avr3a is recognized in the host cytoplasm by the R3a resistance protein. We have exploited this cytoplasmic recognition to report on replacement of the RxLR-EER of Avr3a with the equivalent sequences from the intracellular effectors ATR1NdWsB and ATR13 from the related oomycete pathogen, , and the host targeting signal from the virulence protein PfHRPII. Introduction of these chimeric transgenes into and subsequent virulence testing on potato plants expressing demonstrated the alternative motifs to be functional in translocating Avr3a inside plant cells. These results suggest common mechanisms for protein translocation in both malaria and oomycete pathosystems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021964-0
2008-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3743.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021964-0&mimeType=html&fmt=ahah

References

  1. Allen, R. L., Bittner-Eddy, P. D., Grenville-Briggs, L. J., Meitz, J. C., Rehmany, A. P., Rose, L. E. & Beynon, J. L. ( 2004; ). Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306, 1957–1960.[CrossRef]
    [Google Scholar]
  2. Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I. B., Venter, E., Avrova, A. O., Rehmany, A. P., Böhme, U., Brooks, K. & other authors ( 2005; ). An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci U S A 102, 7766–7771.[CrossRef]
    [Google Scholar]
  3. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. ( 2000; ). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.[CrossRef]
    [Google Scholar]
  4. Bhattacharjee, S., Hiller, N. L., Liolios, K., Win, J., Kanneganti, T., Young, C., Kamoun, S. & Haldar, K. ( 2006; ). The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS Pathog 2, e50 [CrossRef]
    [Google Scholar]
  5. Bhattacharjee, S., van Ooij, C., Balu, B., Adams, J. H. & Haldar, K. ( 2008; ). Maurer's clefts of Plasmodium falciparum are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte. Blood 111, 2418–2426.[CrossRef]
    [Google Scholar]
  6. Birch, P. R., Boevink, P. C., Gilroy, E. M., Hein, I., Pritchard, L. & Whisson, S. C. ( 2008; ). Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11, 373–379.[CrossRef]
    [Google Scholar]
  7. Bittner-Eddy, P. D., Crute, I. R., Holub, E. B. & Beynon, J. L. ( 2000; ). RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21, 177–188.[CrossRef]
    [Google Scholar]
  8. Blanco, F. A. & Judelson, H. S. ( 2005; ). A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638–648.[CrossRef]
    [Google Scholar]
  9. Bos, J. I. B., Kanneganti, T., Young, C., Cakir, C., Huitema, E., Win, J., Armstrong, M. R., Birch, P. R. J. & Kamoun, S. ( 2006; ). The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48, 165–176.[CrossRef]
    [Google Scholar]
  10. Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S. & Pawlowski, J. ( 2007; ). Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE. 2, e790 [CrossRef]
    [Google Scholar]
  11. Catanzariti, A. M., Dodds, P. N. & Ellis, J. G. ( 2007; ). Avirulence proteins from haustoria-forming pathogens. FEMS Microbiol Lett 269, 181–188.[CrossRef]
    [Google Scholar]
  12. Davis, E. L., Hussey, R. S., Mitchum, M. G. & Baum, T. J. ( 2008; ). Parasitism proteins in nematode–plant interactions. Curr Opin Plant Biol 11, 360–366.[CrossRef]
    [Google Scholar]
  13. Derossi, D., Joliot, A. H., Chassaing, G. & Prochiantz, A. ( 1994; ). The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269, 10444–10450.
    [Google Scholar]
  14. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G. & Prochiantz, A. ( 1996; ). Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J Biol Chem 271, 18188–18193.[CrossRef]
    [Google Scholar]
  15. Dodds, P. N., Lawrence, G. J., Catanzariti, A., Ayliffe, M. A. & Ellis, J. G. ( 2004; ). The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16, 755–768.[CrossRef]
    [Google Scholar]
  16. Dou, D., Kale, S. D., Wang, X., Jiang, R. H., Bruce, N. A., Arredondo, F. D., Zhang, X. & Tyler, B. M. ( 2008; ). RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20, 1930–1947.[CrossRef]
    [Google Scholar]
  17. Ellis, J., Catanzariti, A. & Dodds, P. ( 2006; ). The problem of how fungal and oomycete avirulence proteins enter plant cells. Trends Plant Sci 11, 61–63.
    [Google Scholar]
  18. Ellis, J. G., Dodds, P. N. & Lawrence, G. J. ( 2007; ). The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr Opin Microbiol 10, 326–331.[CrossRef]
    [Google Scholar]
  19. Frankel, A. D. & Pabo, C. O. ( 1988; ). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193.[CrossRef]
    [Google Scholar]
  20. Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K. & Sugiura, Y. ( 2001; ). Arginine-rich peptides: an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276, 5836–5840.[CrossRef]
    [Google Scholar]
  21. Gálan, J. E. & Wolf-Watz, H. ( 2006; ). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573.[CrossRef]
    [Google Scholar]
  22. Gaulin, E., Madoui, M. A., Bottin, A., Jacquet, C., Mathé, C., Couloux, A., Wincker, P. & Dumas, B. ( 2008; ). Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways. PLoS ONE. 3, e1723 [CrossRef]
    [Google Scholar]
  23. Haldar, K., Kamoun, S., Hiller, N. L., Bhattacharjee, S. & van Ooij, C. ( 2006; ). Common infection strategies of pathogenic eukaryotes. Nat Rev Microbiol 4, 922–931.[CrossRef]
    [Google Scholar]
  24. He, P., Shan, L. & Sheen, J. ( 2007; ). Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant–microbe interactions. Cell Microbiol 9, 1385–1396.[CrossRef]
    [Google Scholar]
  25. Hiller, N. L., Bhattacharjee, S., Van Ooij, C., Liolios, K., Harrison, T., Lopez-Estraño, C. & Haldar, K. ( 2004; ). A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306, 1934–1937.[CrossRef]
    [Google Scholar]
  26. Hiss, J. A., Przyborski, J. M., Schwarte, F., Lingelbach, K. & Schneider, G. ( 2008; ). The Plasmodium export element revisited. PLoS ONE 3, e1560 [CrossRef]
    [Google Scholar]
  27. Judelson, H. S., Tyler, B. M. & Michelmore, R. W. ( 1991; ). Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4, 602–607.[CrossRef]
    [Google Scholar]
  28. Lopez-Estraño, C., Bhattacharjee, S., Harrison, T. & Haldar, K. ( 2003; ). Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 100, 12402–12407.[CrossRef]
    [Google Scholar]
  29. MacKenzie, J. J., Gomez, N. D., Bhattacharjee, S., Mann, S. & Haldar, K. ( 2008; ). A Plasmodium falciparum host-targeting motif functions in export during blood stage infection of the rodent malarial parasite Plasmodium berghei. PLoS ONE 3, e2405 [CrossRef]
    [Google Scholar]
  30. Mann, D. A. & Frankel, A. D. ( 1991; ). Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10, 1733–1739.
    [Google Scholar]
  31. Marti, M., Good, R. T., Rug, M., Knuepfer, E. & Cowman, A. F. ( 2004; ). Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306, 1930–1933.[CrossRef]
    [Google Scholar]
  32. Morgan, W. & Kamoun, S. ( 2007; ). RXLR effectors of plant pathogenic oomycetes. Curr Opin Microbiol 10, 332–338.[CrossRef]
    [Google Scholar]
  33. Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. ( 2008; ). New insights into animal pathogenic oomycetes. Trends Microbiol 16, 13–19.[CrossRef]
    [Google Scholar]
  34. Rehmany, A. P., Gordon, A., Rose, L. E., Allen, R. L., Armstrong, M. R., Whisson, S. C., Kamoun, S., Tyler, B. M., Birch, P. R. J. & Beynon, J. L. ( 2005; ). Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17, 1839–1850.[CrossRef]
    [Google Scholar]
  35. Rentel, M. C., Leonelli, L., Dahlbeck, D., Zhao, B. & Staskawicz, B. J. ( 2008; ). Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci U S A 105, 1091–1096.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Sohn, K. H., Lei, R., Nemri, A. & Jones, J. D. ( 2007; ). The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19, 4077–4090.[CrossRef]
    [Google Scholar]
  38. Suzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K. & Sugiura, Y. ( 2002; ). Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 277, 2437–2443.[CrossRef]
    [Google Scholar]
  39. van West, P. ( 2006; ). Saprolegnia parasitica, an oomycete pathogen with a fishy appetite; new challenges for an old problem. Mycologist 20, 99–104.[CrossRef]
    [Google Scholar]
  40. Whisson, S. C., Avrova, A. O., Van West, P. & Jones, J. T. ( 2005; ). A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 6, 153–163.[CrossRef]
    [Google Scholar]
  41. Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J. G., Gilroy, E. M., Armstrong, M. R., Grouffaud, S., Van West, P. & other authors ( 2007; ). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115–118.[CrossRef]
    [Google Scholar]
  42. Win, J., Morgan, W., Bos, J., Krasileva, K. V., Cano, L. M., Chaparro-Garcia, A., Ammar, R., Staskawicz, B. J. & Kamoun, S. ( 2007; ). Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19, 2349–2369.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021964-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021964-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error