1887

Abstract

is a filamentous fungus frequently involved in food contamination. Numerous environmental factors (temperature, humidity, atmospheric composition, etc.) or food characteristics (water activity, pH, preservatives, etc.) could represent potential sources of stress for micro-organisms. These factors can directly affect the physiology of these spoilage micro-organisms: growth, conidiation, synthesis of secondary metabolites, etc. This study investigated the transcriptional response to temperature in , since this factor is one of the most important for fungal growth. Gene expression was first analysed by using suppression subtractive hybridization to generate two libraries containing 445 different up- and downregulated expressed sequence tags (ESTs). Expression of these ESTs was then assessed for different thermal stress conditions, with cDNA microarrays, resulting in the identification of 35 and 49 significantly up- and downregulated ESTs, respectively. These ESTs encode heat-shock proteins, ribosomal proteins, superoxide dismutase, trehalose-6-phosphate synthase and a large variety of identified or unknown proteins. Some of these may be molecular markers for thermal stress response in . To our knowledge, this work represents the first study of the transcriptional response of a food spoilage filamentous fungus under thermal stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021386-0
2008-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3752.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021386-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Ancasi E. G., Carrillo L., Benitez Ahrendts M. R. 2006; Moulds and yeasts in bottled water and soft drinks. Rev Argent Microbiol 38:93–96
    [Google Scholar]
  3. Armstrong M. R., Whisson S. C., Pritchard L., Bos J. I., Venter E., Avrova A. O., Rehmany A. P., Bohme U., Brooks K. other authors 2005; An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci U S A 102:7766–7771
    [Google Scholar]
  4. Ashburner M., Bonner J. J. 1979; The induction of gene activity in Drosophila by heat shock. Cell 17:241–254
    [Google Scholar]
  5. Bai Z., Harvey L. M., McNeil B. 2003; Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302
    [Google Scholar]
  6. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  7. Bland J. M., Altman D. G. 1996; Measurement error. BMJ 313:744
    [Google Scholar]
  8. Bond U. 2006; Stressed out! Effects of environmental stress on mRNA metabolism. FEMS Yeast Res 6:160–170
    [Google Scholar]
  9. Borjesson T., Stollman U., Schnurer J. 1992; Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl Environ Microbiol 58:2599–2605
    [Google Scholar]
  10. Box G. E. P., Hunter W. G., Hunter J. S. 1978 Statistics for Experimenters. An Introduction to Design Data Analysis and Model Building New York: Wiley;
    [Google Scholar]
  11. Bustin S. A. 2000; Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193
    [Google Scholar]
  12. Cabral D., Fernandez Pinto V. E. 2002; Fungal spoilage of bottled mineral water. Int J Food Microbiol 72:73–76
    [Google Scholar]
  13. Castillo N. I., Fierro F., Gutierrez S., Martin J. F. 2006; Genome-wide analysis of differentially expressed genes from Penicillium chrysogenum grown with a repressing or a non-repressing carbon source. Curr Genet 49:85–96
    [Google Scholar]
  14. Causton H. C., Ren B., Koh S. S., Harbison C. T., Kanin E., Jennings E. G., Lee T. I., True H. L., Lander E. S. other authors 2001; Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337
    [Google Scholar]
  15. Chang S. C., Wei Y. H., Wei D. L., Chen Y. Y., Jong S. C. 1991; Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti . Appl Environ Microbiol 57:2581–2585
    [Google Scholar]
  16. Chen D., Toone W. M., Mata J., Lyne R., Burns G., Kivinen K., Brazma A., Jones N., Bahler J. 2003; Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214–229
    [Google Scholar]
  17. Choi J. H., Lou W., Vancura A. 1998; A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae . J Biol Chem 273:29915–29922
    [Google Scholar]
  18. Cosgrove J. W., Brown I. R. 1983; Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by d-lysergic acid diethylamide. Proc Natl Acad Sci U S A 80:569–573
    [Google Scholar]
  19. Craig E. A. 1985; The heat shock response. CRC Crit Rev Biochem 18:239–280
    [Google Scholar]
  20. Dantigny P., Guilmart A., Bensoussan M. 2005; Basis of predictive mycology. Int J Food Microbiol 100:187–196
    [Google Scholar]
  21. Davidson J. F., Whyte B., Bissinger P. H., Schiestl R. H. 1996; Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 93:5116–5121
    [Google Scholar]
  22. De Virgilio C., Hottiger T., Dominguez J., Boller T., Wiemken A. 1994; The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186
    [Google Scholar]
  23. Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N. other authors 1996; Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030
    [Google Scholar]
  24. Dogra N., Breuil C. 2004; Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae . FEMS Microbiol Lett 238:175–181
    [Google Scholar]
  25. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185
    [Google Scholar]
  26. Feder M. E., Hofmann G. E. 1999; Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282
    [Google Scholar]
  27. Felipe M. S., Andrade R. V., Arraes F. B., Nicola A. M., Maranhao A. Q., Torres F. A., Silva-Pereira I., Pocas-Fonseca M. J., Campos E. G. other authors 2005; Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 280:24706–24714
    [Google Scholar]
  28. Fiedurek J. 1997; Enhancement of β-galactosidase production and secretion by high osmotic stress in Penicillium notatum . Microbiol Res 153:65–69
    [Google Scholar]
  29. Fleige S., Pfaffl M. W. 2006; RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139
    [Google Scholar]
  30. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257
    [Google Scholar]
  31. Gorenstein C., Warner J. R. 1976; Coordinate regulation of the synthesis of eukaryotic ribosomal proteins. Proc Natl Acad Sci U S A 73:1547–1551
    [Google Scholar]
  32. Gurskaya N. G., Diatchenko L., Chenchik A., Siebert P. D., Khaspekov G. L., Lukyanov K. A., Vagner L. L., Ermolaeva O. D., Lukyanov S. A. other authors 1996; Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemagglutinin and phorbol 12-myristate 13-acetate. Anal Biochem 240:90–97
    [Google Scholar]
  33. Hereford L. M., Rosbash M. 1977; Regulation of a set of abundant mRNA sequences. Cell 10:463–467
    [Google Scholar]
  34. Hottiger T., De Virgilio C., Hall M. N., Boller T., Wiemken A. 1994; The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro . Eur J Biochem 219:187–193
    [Google Scholar]
  35. Jelinsky S. A., Samson L. D. 1999; Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96:1486–1491
    [Google Scholar]
  36. Kapoor M., Curle C. A., Runham C. 1995; The hsp70 gene family of Neurospora crassa: cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member. J Bacteriol 177:212–221
    [Google Scholar]
  37. Kim C. H., Warner J. R. 1983; Mild temperature shock alters the transcription of a discrete class of Saccharomyces cerevisiae genes. Mol Cell Biol 3:457–465
    [Google Scholar]
  38. Kokkonen M., Jestoi M., Rizzo A. 2005; The effect of substrate on mycotoxin production of selected Penicillium strains. Int J Food Microbiol 99:207–214
    [Google Scholar]
  39. Kurata H., Sakabe F., Udagawa S., Ichinoe M., Suzuki M. 1968; A mycological examination for the presence of mycotoxin-producers on the 1954–1967's stored rice grains. Eisei Shikenjo Hokoku 86:183–188
    [Google Scholar]
  40. Lee S. H., Lee S., Choi D., Lee Y. W., Yun S. H. 2006; Identification of the down-regulated genes in a mat1–2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 43:295–310
    [Google Scholar]
  41. Lindquist S. 1986; The heat-shock response. Annu Rev Biochem 55:1151–1191
    [Google Scholar]
  42. Liu H., Xi L., Zhang J., Li X., Liu X., Lu C., Sun J. 2007; Identifying differentially expressed genes in the dimorphic fungus Penicillium marneffei by suppression subtractive hybridization. FEMS Microbiol Lett 270:97–103
    [Google Scholar]
  43. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408
    [Google Scholar]
  44. Magan N., Hope R., Colleate A., Baxter E. S. 2002; Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. Eur J Plant Pathol 108:685–690
    [Google Scholar]
  45. Marques E. R., Ferreira M. E., Drummond R. D., Felix J. M., Menossi M., Savoldi M., Travassos L. R., Puccia R., Batista W. L. other authors 2004; Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Mol Genet Genomics 271:667–677
    [Google Scholar]
  46. McAlister L., Finkelstein D. B. 1980; Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun 93:819–824
    [Google Scholar]
  47. Michan C., Monje-Casas F., Pueyo C. 2005; Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium. DNA Repair 4:469–478
    [Google Scholar]
  48. Mislivec P. B., Tuite J. 1970; Species of Penicillium occurring in freshly-harvested and in stored dent corn kernels. Mycologia 62:67–74
    [Google Scholar]
  49. Mohsenzadeh S., Saupe-Thies W., Steier G., Schroeder T., Fracella F., Ruoff P., Rensing L. 1998; Temperature adaptation of house keeping and heat shock gene expression in Neurospora crassa . Fungal Genet Biol 25:31–43
    [Google Scholar]
  50. Monje-Casas F., Michan C., Pueyo C. 2004; Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochem J 383:139–147
    [Google Scholar]
  51. Nailis H., Coenye T., Van Nieuwerburgh F., Deforce D., Nelis H. J. 2006; Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25
    [Google Scholar]
  52. Newbury J., Peberdy J. F. 1996; Characterization of the heat shock response in protoplasts of Aspergillus nidulans . Mycol Res 100:1325–1332
    [Google Scholar]
  53. Northolt M. D., van Egmond H. P., Soentoro P., Deijll E. 1980; Fungal growth and the presence of sterigmatocystin in hard cheese. J Assoc Off Anal Chem 63:115–119
    [Google Scholar]
  54. Noventa-Jordao M. A., Couto R. M., Goldman M. H., Aguirre J., Iyer S., Caplan A., Terenzi H. F., Goldman G. H. 1999; Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology 145:3229–3234
    [Google Scholar]
  55. Osherov N., Mathew J., Romans A., May G. S. 2002; Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridization. Fungal Genet Biol 37:197–204
    [Google Scholar]
  56. Overy D. P., Seifert K. A., Savard M. A., Frisvad J. C. 2003; Spoilage fungi and their mycotoxins in commercially marketed chestnuts. Int J Food Microbiol 88:69–77
    [Google Scholar]
  57. Piper P. W. 1993; Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae . FEMS Microbiol Rev 11:339–355
    [Google Scholar]
  58. Piper P. W. 1995; The heat shock and ethanol stress response of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127
    [Google Scholar]
  59. Pitt J. I. 2000 A Laboratory Guide to Common Penicillium Species , 3rd edn. North Ryde, Australia: Food Science;
    [Google Scholar]
  60. Pitt J. I., Hocking A. D. 1997 Fungi and Food Spoilage London: Blackie Academic and Professional;
    [Google Scholar]
  61. Rozen S., Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    [Google Scholar]
  62. Ruepp A., Zollner A., Maier D., Albermann K., Hani J., Mokrejs M., Tetko I., Guldener U., Mannhaupt G. other authors 2004; The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545
    [Google Scholar]
  63. Sakaki K., Tashiro K., Kuhara S., Mihara K. 2003; Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae . J Biochem 134:373–384
    [Google Scholar]
  64. Samson R. A., Hoekstra E. S., Frisvad J. C., Filtenborg O. 2004 Introduction to Food and Airborne Fungi Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures (CBS;
    [Google Scholar]
  65. Schmittgen T. D., Zakrajsek B. A. 2000; Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81
    [Google Scholar]
  66. Shalon D., Smith S. J., Brown P. O. 1996; A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6:639–645
    [Google Scholar]
  67. Singer M. A., Lindquist S. 1998; Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468
    [Google Scholar]
  68. Steenman M., Lamirault G., Le Meur N., Le Cunff M., Escande D., Leger J. J. 2005; Distinct molecular portraits of human failing hearts identified by dedicated cDNA microarrays. Eur J Heart Fail 7:157–165
    [Google Scholar]
  69. Tereshina V. M. 2005; Thermotolerance in fungi: the role of heat shock proteins and trehalose. Microbiology 74:293–304
    [Google Scholar]
  70. Tucker M., Parker R. 2000; Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae . Annu Rev Biochem 69:571–595
    [Google Scholar]
  71. Udagawa S. I., Kobatake M., Kurata H. 1977; Re-estimation of preservation effectiveness of potassium sorbate (food additive) in jams and marmalade. Eisei Shikenjo Hokoku88–92 in Japanese
    [Google Scholar]
  72. Wilusz C. J., Gao M., Jones C. L., Wilusz J., Peltz S. W. 2001; Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA 7:1416–1424
    [Google Scholar]
  73. Yamamori T., Yura T. 1982; Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A 79:860–864
    [Google Scholar]
  74. Yan H. Z., Liou R. F. 2006; Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica . Fungal Genet Biol 43:430–438
    [Google Scholar]
  75. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15
    [Google Scholar]
  76. Zeuthen M. L., Howard D. H. 1989; Thermotolerance and the heat-shock response in Candida albicans . J Gen Microbiol 135:2509–2518
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021386-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021386-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error