1887

Abstract

The common soil fungus (teleomorph , Ascomycota) shows increasing medical importance as an opportunistic human pathogen, particularly in immunocompromised and immunosuppressed patients. Regardless of the disease type and the therapy used, the prognosis for infection is usually poor. has been identified as the causal agent in the majority of reported mycoses. As is very common in environmental samples from all over the world, the relationship between its clinical and wild strains remains unclear. Here we performed a multilocus (ITS1 and 2, , and ) phylogenetic analysis of all available clinical isolates (15) and 36 wild-type strains of the fungus including several cultures of its putative teleomorph . The concordance of gene genealogies recognized and to be different phylogenetic species, which are reproductively isolated from each other. The majority of clinical strains (12) were attributed to but three isolates belonged to , which broadens the phylogenetic span of human opportunists in the genus. Despite their genetic isolation, and were shown to be cosmopolitan sympatric species with no bias towards certain geographical locations. The analysis of haplotype association, incongruence of tree topologies and the split decomposition method supported the conclusion that is sexually recombining whereas strict clonality prevails in . This is a rare case of occurrence of sexual reproduction in opportunistic pathogenic fungi. The discovery of the different reproduction strategies in these two closely related species is medically relevant because it is likely that they would also differ in virulence and/or drug resistance. Genetic identity of environmental and clinical isolates of and suggests the danger of nosocomial infections by and highlights the need for ecological studies of spore dispersal as source of invasive human mycoses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021196-0
2008-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3447.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021196-0&mimeType=html&fmt=ahah

References

  1. Akaike, H. ( 1974; ). A new look at the statistical model identification. IEEE Trans Automat Contr 19, 716–723.[CrossRef]
    [Google Scholar]
  2. Antal, Z., Varga, J., Kredics, L., Szekeres, A., Hatvani, L., Manczinger, L., Vágvölgyi, C. & Nagy, E. ( 2006; ). Intraspecific mitochondrial DNA polymorphism within the emerging filamentous fungal pathogen Trichoderma longibrachiatum. J Med Microbiol 55, 31–35.[CrossRef]
    [Google Scholar]
  3. Chaverri, P., Castlebury, L. A., Samuels, G. J. & Geiser, D. M. ( 2003; ). Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27, 302–313.[CrossRef]
    [Google Scholar]
  4. Chouaki, T., Lavarde, V., Lachaud, L., Raccurt, C. P. & Hennequin, C. ( 2002; ). Invasive infections due to Trichoderma species: report of 2 cases, findings of in vitro susceptibility testing, and review of the literature. Clin Infect Dis 35, 1360–1367.[CrossRef]
    [Google Scholar]
  5. Clement, M., Posada, D. & Crandall, K. ( 2000; ). TCS: a computer program to estimate gene genealogies. Mol Ecol 9, 1657–1660.[CrossRef]
    [Google Scholar]
  6. Cunningham, C. W. ( 1997; ). Is incongruence between data partitions a reliable predictor of phylogenetic accuracy? Empirical testing an iterative procedure for choosing among phylogenetic methods. Syst Biol 46, 464–478.[CrossRef]
    [Google Scholar]
  7. Dettman, J. R., Jacobson, D. J. & Taylor, J. W. ( 2003; ). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57, 2703–2720.[CrossRef]
    [Google Scholar]
  8. Druzhinina, I. S., Kopchinskiy, A. G., Komon, M., Bissett, J., Szakacs, G. & Kubicek, C. P. ( 2005; ). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42, 813–828.[CrossRef]
    [Google Scholar]
  9. Druzhinina, I. S., LaFe, K., Willinger, B., Komoń-Zelazowska, M., Ammirati, J., Kubicek, C. P. & Rogers, J. D. ( 2008; ). An unknown species from Hypocreaceae isolated from human lung tissue of a patient with non-fatal pulmonary fibrosis. Clin Microbiol Newsl 29, 180–184.
    [Google Scholar]
  10. Furukawa, H., Kusne, S., Sutton, D. A., Manez, R., Carrau, R., Nichols, L., Abu-Elmagd, K., Skedros, D., Todo, D. & Rinaldi, M. G. ( 1998; ). Acute invasive sinusitis due to Trichoderma longibrachiatum in a liver and small bowel transplant recipient. Clin Infect Dis 26, 487–489.[CrossRef]
    [Google Scholar]
  11. Gräser, Y., Kühnisch, J. & Presber, W. ( 1999; ). Molecular markers reveal exclusively clonal reproduction in Trichophyton rubrum. J Clin Microbiol 37, 3713–3717.
    [Google Scholar]
  12. Halliday, C. L. & Carter, D. A. ( 2003; ). Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J Clin Microbiol 41, 703–711.[CrossRef]
    [Google Scholar]
  13. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. ( 2004; ). Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2, 43–56.[CrossRef]
    [Google Scholar]
  14. Hasegawa, M., Kishino, K. & Yano, T. ( 1985; ). Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  15. Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I. S., Kubicek, C. P., Nagy, A., Nagy, E., Vágvölgyi, C. & Kredics, L. ( 2007; ). Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97, 532–537.[CrossRef]
    [Google Scholar]
  16. Hennequin, C., Chouaki, T., Pichon, J. C., Strunski, V. & Raccurt, C. ( 2000; ). Otitis externa due to Trichoderma longibrachiatum. Eur J Clin Microbiol Infect Dis 19, 641–642.[CrossRef]
    [Google Scholar]
  17. Hill, W. G. & Robertson, A. ( 1968; ). Linkage disequilibrium in finite populations. Theor Appl Genet 38, 226–231.[CrossRef]
    [Google Scholar]
  18. Huelsenbeck, J. P., Bull, J. J. & Cunningham, C. W. ( 1996; ). Combining data in phylogenetic analysis. Trends Ecol Evol 11, 152–158.[CrossRef]
    [Google Scholar]
  19. Huson, D. H. ( 1998; ). SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.[CrossRef]
    [Google Scholar]
  20. Huson, D. H. & Bryant, D. ( 2006; ). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23, 254–267.
    [Google Scholar]
  21. Jaklitsch, W. M., Komon, M., Kubicek, C. P. & Druzhinina, I. S. ( 2006; ). Hypocrea crystalligena sp. nov., a common European species with a white-spored Trichoderma anamorph. Mycologia 98, 499–513.[CrossRef]
    [Google Scholar]
  22. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  23. Klein, D. & Eveleigh, D. E. ( 1998; ). Ecology of Trichoderma. Trichoderma and Gliocladium, vol. 1, Basic Biology, Taxonomy and Genetics, pp. 57–74. Edited by C. P. Kubicek & G. E. Harman. London, UK: Taylor & Francis.
  24. Komoń-Zelazowska, M., Bissett, J., Zafari, D., Hatvani, L., Manczinger, L., Woo, S., Lorito, M., Kredics, L., Kubicek, C. P. & Druzhinina, I. S. ( 2007; ). Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl Environ Microbiol 73, 7415–7426.[CrossRef]
    [Google Scholar]
  25. Kratzer, C., Tobudic, S., Schmoll, M., Graninger, W. & Georgopoulos, A. ( 2006; ). In vitro activity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp. J Antimicrob Chemother 58, 1058–1061.[CrossRef]
    [Google Scholar]
  26. Kredics, L., Antal, Z., Dóczi, I., Manczinger, L., Kevei, F. & Nagy, E. ( 2003; ). Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung 50, 105–117.[CrossRef]
    [Google Scholar]
  27. Kubicek, C. P., Bissett, J., Kullnig-Gradinger, C. M., Druzhinina, I. S. & Szakacs, G. ( 2003; ). Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38, 310–317.[CrossRef]
    [Google Scholar]
  28. Kuhls, K., Lieckfeldt, E., Samuels, G. J., Meyer, W., Kubicek, C. P. & Börner, T. ( 1997; ). Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia 89, 442–460.[CrossRef]
    [Google Scholar]
  29. Kuhls, K., Lieckfeldt, E., Börner, T. & Guého, E. ( 1999; ). Molecular re-identification of human pathogenic Trichoderma isolates as Trichoderma longibrachiatum and Trichoderma citrinoviride. Med Mycol 37, 25–33.[CrossRef]
    [Google Scholar]
  30. Kullnig, C. M., Szakacs, G. & Kubicek, C. P. ( 2000; ). Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. Mycol Res 104, 1117–1125.[CrossRef]
    [Google Scholar]
  31. Leache, A. D. & Reeder, T. W. ( 2002; ). Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood and Bayesian approaches. Syst Biol 51, 44–68.[CrossRef]
    [Google Scholar]
  32. Lewontin, R. C. ( 1964; ). The interaction of selection and linkage. I. General considerations: heterozygotic models. Genetics 49, 49–67.
    [Google Scholar]
  33. Maynard Smith, J. ( 1992; ). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  34. Milgroom, M. G. ( 1996; ). Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol 34, 457–477.[CrossRef]
    [Google Scholar]
  35. Morehouse, E. A., James, T. Y., Ganley, A. R. D., Vilgalys, R., Berger, D., Murphy, P. J. & Longcore, J. E. ( 2003; ). Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12, 395–403.[CrossRef]
    [Google Scholar]
  36. Munoz, F. M., Demmler, G. J., Travis, W. R., Ogden, A. K., Rossmann, S. N. & Rinaldi, M. G. ( 1997; ). Trichoderma longibrachiatum infection in a pediatric patient with aplastic anemia. J Clin Microbiol 35, 499–503.
    [Google Scholar]
  37. Myoken, Y., Sugata, T., Fujita, Y., Asaoku, H., Fujihara, M. & Mikami, Y. ( 2002; ). Fatal necrotizing stomatitis due to Trichoderma longibrachiatum in a neutropenic patient with malignant lymphoma: a case report. Int J Oral Maxillofac Surg 31, 688–691.[CrossRef]
    [Google Scholar]
  38. Nicholas, K. B. & Nicholas, H. B., Jr ( 1997; ). Genedoc: a tool for editing and annotating multiple sequence alignments. http://www.psc.edu/biomed/genedoc.
  39. Nielsen, K. & Heitman, J. ( 2007; ). Sex and virulence of human pathogenic fungi. Adv Genet 57, 143–173.
    [Google Scholar]
  40. Normak, B. B., Judson, O. P. & Morgan, N. A. ( 2003; ). Genomic signatures of ancient asexual lineages. Biol J Linn Soc Lond 79, 69–84.[CrossRef]
    [Google Scholar]
  41. Paoletti, M., Rydholm, C., Schwier, E. U., Anderson, M. J., Szakacs, G., Lutzoni, F., Debeaupuis, J. P., Latgé, J. P., Denning, D. W. & other authors ( 2005; ). Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15, 1242–1248.[CrossRef]
    [Google Scholar]
  42. Posada, D. ( 2003; ). Using Modeltest and paup* to select a model of nucleotide substitution. In Current Protocols in Bioinformatics, pp. 6.5.1–6.5.14. Edited by A. D. Baxevanis, D. B. Davison, R. D. M. Page, G. A. Petsko, L. D. Stein & G. D. Stormo. New York: Wiley.
  43. Posada, D. ( 2008; ). jModelTest: Phylogenetic Model Averaging. Mol Biol Evol in press
    [Google Scholar]
  44. Pringle, A., Baker, D. M., Platt, J. L., Wares, J. P., Latge, J. P. & Taylor, J. W. ( 2005; ). Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59, 1886–1899.[CrossRef]
    [Google Scholar]
  45. Richter, S., Cormican, M. G., Pfaller, M. A., Lee, C. K., Gingrich, R., Rinaldi, M. G. & Sutton, D. A. ( 1999; ). Fatal disseminated Trichoderma longibrachiatum infection in an adult bone marrow transplant patient: species identification and review of the literature. J Clin Microbiol 37, 1154–1160.
    [Google Scholar]
  46. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  47. Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. ( 2003; ). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.[CrossRef]
    [Google Scholar]
  48. Samuels, G. J., Petrini, O., Kuhls, K., Lieckfeldt, E. & Kubicek, C. P. ( 1998; ). The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol 41, 1–54.
    [Google Scholar]
  49. Sánchez, V., Rebolledo, O., Picaso, R. M., Cárdenas, E., Córdova, C., González, O. & Samuels, G. J. ( 2007; ). In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia 163, 49–58.[CrossRef]
    [Google Scholar]
  50. Schwarz, G. ( 1978; ). Estimating the dimension of a model. Ann Stat 6, 461–464.[CrossRef]
    [Google Scholar]
  51. Seguin, P., Degeilh, B., Grulois, G., Gacouin, A., Maugendre, S., Dufour, T., Dupont, B. & Camus, C. ( 1995; ). Successful treatment of a brain abscess due to Trichoderma longibrachiatum after surgical resection. Eur J Clin Microbiol Infect Dis 14, 445–448.[CrossRef]
    [Google Scholar]
  52. Swofford, D. L. ( 2002; ). paup*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, MA.
  53. Szekeres, A., Láday, M., Kredics, L., Varga, J., Antal, Z., Hatvani, L., Manczinger, L., Vágvölgyi, C. & Nagy, E. ( 2006; ). Rapid identification of clinical Trichoderma longibrachiatum isolates by cellulose-acetate electrophoresis-mediated isoenzyme analysis. Clin Microbiol Infect 12, 369–375.[CrossRef]
    [Google Scholar]
  54. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  55. Tang, P., Mohan, S., Sigler, L., Witterick, I., Summerbell, R., Campbell, I. & Mazzulli, T. ( 2003; ). Allergic fungal sinusitis associated with Trichoderma longibrachiatum. J Clin Microbiol 41, 5333–5336.[CrossRef]
    [Google Scholar]
  56. Tanis, B. C., van der Pijl, H., van Ogtrop, M. L., Kibbelaar, R. E. & Chang, P. C. ( 1995; ). Fatal fungal peritonitis by Trichoderma longibrachiatum complicating peritoneal dialysis. Nephrol Dial Transplant 10, 114–116.[CrossRef]
    [Google Scholar]
  57. Tavaré, S. ( 1986; ). Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology – DNA Sequence Analysis, pp. 57–86. Edited by R. M. Miura. Providence, RI: American Mathematical Society.
  58. Taylor, J. W., Geiser, D. M., Burt, A. & Koufopanou, V. ( 1999; ). The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev 12, 126–146.
    [Google Scholar]
  59. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  60. Thrane, U., Poulsen, S. B., Nirenberg, H. I. & Lieckfeldt, E. ( 2001; ). Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol Lett 203, 249–255.[CrossRef]
    [Google Scholar]
  61. Turner, D., Kovacs, W., Kuhls, K., Lieckfeldt, E., Peter, B., Arisan-Atac, I., Strauss, J., Samuels, G. J., Börner, T. & Kubicek, C. P. ( 1997; ). Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. Mycol Res 101, 449–459.[CrossRef]
    [Google Scholar]
  62. Vizcaíno, J. A., Sanz, L., Basilio, A., Vicente, F., Gutiérrez, F., Hermosa, M. R. & Monte, E. ( 2005; ). Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res 109, 1397–1406.[CrossRef]
    [Google Scholar]
  63. Walsh, T. J. & Groll, A. H. ( 1999; ). Emerging fungal pathogens: evolving challenges to immunocompromised patients for the twenty-first century. Transpl Infect Dis 1, 247–261.[CrossRef]
    [Google Scholar]
  64. Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. ( 2004; ). AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. http://ceb.csit.fsu.edu/awty.
  65. Wuczkowski, M., Druzhinina, I. S., Gherbawy, Y., Klug, B., Prillinger, H. J. & Kubicek, C. P. ( 2003; ). Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 158, 125–133.[CrossRef]
    [Google Scholar]
  66. Zhang, C. L., Druzhinina, I. S., Kubicek, C. P. & Xu, T. ( 2005; ). Biodiversity of Trichoderma in China: evidence for a North to South difference of species distribution in East Asia. FEMS Microbiol Lett 251, 251–257.[CrossRef]
    [Google Scholar]
  67. Zhang, N., O'Donnell, K., Sutton, D. A., Nalim, F. A., Summerbell, R. C., Padhye, A. A. & Geiser, D. M. ( 2006; ). Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol 44, 2186–2190.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021196-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021196-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error