1887

Abstract

The common soil fungus (teleomorph , Ascomycota) shows increasing medical importance as an opportunistic human pathogen, particularly in immunocompromised and immunosuppressed patients. Regardless of the disease type and the therapy used, the prognosis for infection is usually poor. has been identified as the causal agent in the majority of reported mycoses. As is very common in environmental samples from all over the world, the relationship between its clinical and wild strains remains unclear. Here we performed a multilocus (ITS1 and 2, , and ) phylogenetic analysis of all available clinical isolates (15) and 36 wild-type strains of the fungus including several cultures of its putative teleomorph . The concordance of gene genealogies recognized and to be different phylogenetic species, which are reproductively isolated from each other. The majority of clinical strains (12) were attributed to but three isolates belonged to , which broadens the phylogenetic span of human opportunists in the genus. Despite their genetic isolation, and were shown to be cosmopolitan sympatric species with no bias towards certain geographical locations. The analysis of haplotype association, incongruence of tree topologies and the split decomposition method supported the conclusion that is sexually recombining whereas strict clonality prevails in . This is a rare case of occurrence of sexual reproduction in opportunistic pathogenic fungi. The discovery of the different reproduction strategies in these two closely related species is medically relevant because it is likely that they would also differ in virulence and/or drug resistance. Genetic identity of environmental and clinical isolates of and suggests the danger of nosocomial infections by and highlights the need for ecological studies of spore dispersal as source of invasive human mycoses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021196-0
2008-11-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3447.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021196-0&mimeType=html&fmt=ahah

References

  1. Akaike H.. 1974; A new look at the statistical model identification. IEEE Trans Automat Contr19:716–723
    [Google Scholar]
  2. Antal Z., Varga J., Kredics L., Szekeres A., Hatvani L., Manczinger L., Vágvölgyi C., Nagy E.. 2006; Intraspecific mitochondrial DNA polymorphism within the emerging filamentous fungal pathogen Trichoderma longibrachiatum. J Med Microbiol55:31–35
    [Google Scholar]
  3. Chaverri P., Castlebury L. A., Samuels G. J., Geiser D. M.. 2003; Multilocus phylogenetic structure within the Trichoderma harzianum/ Hypocrea lixii complex. Mol Phylogenet Evol27:302–313
    [Google Scholar]
  4. Chouaki T., Lavarde V., Lachaud L., Raccurt C. P., Hennequin C.. 2002; Invasive infections due to Trichoderma species: report of 2 cases, findings of in vitro susceptibility testing, and review of the literature. Clin Infect Dis35:1360–1367
    [Google Scholar]
  5. Clement M., Posada D., Crandall K.. 2000; TCS: a computer program to estimate gene genealogies. Mol Ecol9:1657–1660
    [Google Scholar]
  6. Cunningham C. W.. 1997; Is incongruence between data partitions a reliable predictor of phylogenetic accuracy? Empirical testing an iterative procedure for choosing among phylogenetic methods. Syst Biol46:464–478
    [Google Scholar]
  7. Dettman J. R., Jacobson D. J., Taylor J. W.. 2003; A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution57:2703–2720
    [Google Scholar]
  8. Druzhinina I. S., Kopchinskiy A. G., Komon M., Bissett J., Szakacs G., Kubicek C. P.. 2005; An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol42:813–828
    [Google Scholar]
  9. Druzhinina I. S., LaFe K., Willinger B., Komoń-Zelazowska M., Ammirati J., Kubicek C. P., Rogers J. D.. 2008; An unknown species from Hypocreaceae isolated from human lung tissue of a patient with non-fatal pulmonary fibrosis. Clin Microbiol Newsl29:180–184
    [Google Scholar]
  10. Furukawa H., Kusne S., Sutton D. A., Manez R., Carrau R., Nichols L., Abu-Elmagd K., Skedros D., Todo D., Rinaldi M. G.. 1998; Acute invasive sinusitis due to Trichoderma longibrachiatum in a liver and small bowel transplant recipient. Clin Infect Dis26:487–489
    [Google Scholar]
  11. Gräser Y., Kühnisch J., Presber W.. 1999; Molecular markers reveal exclusively clonal reproduction in Trichophyton rubrum. J Clin Microbiol37:3713–3717
    [Google Scholar]
  12. Halliday C. L., Carter D. A.. 2003; Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J Clin Microbiol41:703–711
    [Google Scholar]
  13. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M.. 2004; Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol2:43–56
    [Google Scholar]
  14. Hasegawa M., Kishino K., Yano T.. 1985; Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol22:160–174
    [Google Scholar]
  15. Hatvani L., Antal Z., Manczinger L., Szekeres A., Druzhinina I. S., Kubicek C. P., Nagy A., Nagy E., Vágvölgyi C., Kredics L.. 2007; Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology97:532–537
    [Google Scholar]
  16. Hennequin C., Chouaki T., Pichon J. C., Strunski V., Raccurt C.. 2000; Otitis externa due to Trichoderma longibrachiatum. Eur J Clin Microbiol Infect Dis19:641–642
    [Google Scholar]
  17. Hill W. G., Robertson A.. 1968; Linkage disequilibrium in finite populations. Theor Appl Genet38:226–231
    [Google Scholar]
  18. Huelsenbeck J. P., Bull J. J., Cunningham C. W.. 1996; Combining data in phylogenetic analysis. Trends Ecol Evol11:152–158
    [Google Scholar]
  19. Huson D. H.. 1998; SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics14:68–73
    [Google Scholar]
  20. Huson D. H., Bryant D.. 2006; Application of phylogenetic networks in evolutionary studies. Mol Biol Evol23:254–267
    [Google Scholar]
  21. Jaklitsch W. M., Komon M., Kubicek C. P., Druzhinina I. S.. 2006; Hypocrea crystalligena sp. nov., a common European species with a white-spored Trichoderma anamorph. Mycologia98:499–513
    [Google Scholar]
  22. Kimura M.. 1980; A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120
    [Google Scholar]
  23. Klein D., Eveleigh D. E.. 1998; Ecology of Trichoderma. Trichoderma and Gliocladium, vol. 1, Basic Biology, Taxonomy and Genetics pp57–74 Edited by Kubicek C. P., Harman G. E.. London, UK: Taylor & Francis;
    [Google Scholar]
  24. Komoń-Zelazowska M., Bissett J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C. P., Druzhinina I. S.. 2007; Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl Environ Microbiol73:7415–7426
    [Google Scholar]
  25. Kratzer C., Tobudic S., Schmoll M., Graninger W., Georgopoulos A.. 2006; In vitro activity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp. J Antimicrob Chemother58:1058–1061
    [Google Scholar]
  26. Kredics L., Antal Z., Dóczi I., Manczinger L., Kevei F., Nagy E.. 2003; Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung50:105–117
    [Google Scholar]
  27. Kubicek C. P., Bissett J., Kullnig-Gradinger C. M., Druzhinina I. S., Szakacs G.. 2003; Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol38:310–317
    [Google Scholar]
  28. Kuhls K., Lieckfeldt E., Samuels G. J., Meyer W., Kubicek C. P., Börner T.. 1997; Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia89:442–460
    [Google Scholar]
  29. Kuhls K., Lieckfeldt E., Börner T., Guého E.. 1999; Molecular re-identification of human pathogenic Trichoderma isolates as Trichoderma longibrachiatum and Trichoderma citrinoviride. Med Mycol37:25–33
    [Google Scholar]
  30. Kullnig C. M., Szakacs G., Kubicek C. P.. 2000; Molecular identification of Trichoderma species from Russia. Siberia and the Himalaya. Mycol Res104:1117–1125
    [Google Scholar]
  31. Leache A. D., Reeder T. W.. 2002; Molecular systematics of the eastern fence lizard ( Sceloporus undulatus): a comparison of parsimony, likelihood and Bayesian approaches. Syst Biol51:44–68
    [Google Scholar]
  32. Lewontin R. C.. 1964; The interaction of selection and linkage. I. General considerations: heterozygotic models. Genetics49:49–67
    [Google Scholar]
  33. Maynard Smith J.. 1992; Analyzing the mosaic structure of genes. J Mol Evol34:126–129
    [Google Scholar]
  34. Milgroom M. G.. 1996; Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol34:457–477
    [Google Scholar]
  35. Morehouse E. A., James T. Y., Ganley A. R. D., Vilgalys R., Berger D., Murphy P. J., Longcore J. E.. 2003; Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol12:395–403
    [Google Scholar]
  36. Munoz F. M., Demmler G. J., Travis W. R., Ogden A. K., Rossmann S. N., Rinaldi M. G.. 1997; Trichoderma longibrachiatum infection in a pediatric patient with aplastic anemia. J Clin Microbiol35:499–503
    [Google Scholar]
  37. Myoken Y., Sugata T., Fujita Y., Asaoku H., Fujihara M., Mikami Y.. 2002; Fatal necrotizing stomatitis due to Trichoderma longibrachiatum in a neutropenic patient with malignant lymphoma: a case report. Int J Oral Maxillofac Surg31:688–691
    [Google Scholar]
  38. Nicholas K. B., Nicholas H. B. Jr. 1997; Genedoc: a tool for editing and annotating multiple sequence alignments.
    [Google Scholar]
  39. Nielsen K., Heitman J.. 2007; Sex and virulence of human pathogenic fungi. Adv Genet57:143–173
    [Google Scholar]
  40. Normak B. B., Judson O. P., Morgan N. A.. 2003; Genomic signatures of ancient asexual lineages. Biol J Linn Soc Lond79:69–84
    [Google Scholar]
  41. Paoletti M., Rydholm C., Schwier E. U., Anderson M. J., Szakacs G., Lutzoni F., Debeaupuis J. P., Latgé J. P., Denning D. W.. other authors 2005; Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol15:1242–1248
    [Google Scholar]
  42. Posada D.. 2003; Using Modeltest and paup* to select a model of nucleotide substitution. In Current Protocols in Bioinformatics pp6.5.1–6.5.14 Edited by Baxevanis A. D., Davison D. B., Page R. D. M., Petsko G. A., Stein L. D., Stormo G. D.. New York: Wiley;
    [Google Scholar]
  43. Posada D.. 2008; jModelTest: Phylogenetic Model Averaging. Mol Biol Evol in press.
  44. Pringle A., Baker D. M., Platt J. L., Wares J. P., Latge J. P., Taylor J. W.. 2005; Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution59:1886–1899
    [Google Scholar]
  45. Richter S., Cormican M. G., Pfaller M. A., Lee C. K., Gingrich R., Rinaldi M. G., Sutton D. A.. 1999; Fatal disseminated Trichoderma longibrachiatum infection in an adult bone marrow transplant patient: species identification and review of the literature. J Clin Microbiol37:1154–1160
    [Google Scholar]
  46. Ronquist F., Huelsenbeck J. P.. 2003; MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574
    [Google Scholar]
  47. Rozas J., Sanchez-DelBarrio J. C., Messeguer X., Rozas R.. 2003; DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics19:2496–2497
    [Google Scholar]
  48. Samuels G. J., Petrini O., Kuhls K., Lieckfeldt E., Kubicek C. P.. 1998; The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol41:1–54
    [Google Scholar]
  49. Sánchez V., Rebolledo O., Picaso R. M., Cárdenas E., Córdova C., González O., Samuels G. J.. 2007; In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia163:49–58
    [Google Scholar]
  50. Schwarz G.. 1978; Estimating the dimension of a model. Ann Stat6:461–464
    [Google Scholar]
  51. Seguin P., Degeilh B., Grulois G., Gacouin A., Maugendre S., Dufour T., Dupont B., Camus C.. 1995; Successful treatment of a brain abscess due to Trichoderma longibrachiatum after surgical resection. Eur J Clin Microbiol Infect Dis14:445–448
    [Google Scholar]
  52. Swofford D. L.. 2002; paup*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10 Sinauer Associates, Sunderland, MA:
    [Google Scholar]
  53. Szekeres A., Láday M., Kredics L., Varga J., Antal Z., Hatvani L., Manczinger L., Vágvölgyi C., Nagy E.. 2006; Rapid identification of clinical Trichoderma longibrachiatum isolates by cellulose-acetate electrophoresis-mediated isoenzyme analysis. Clin Microbiol Infect12:369–375
    [Google Scholar]
  54. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526
    [Google Scholar]
  55. Tang P., Mohan S., Sigler L., Witterick I., Summerbell R., Campbell I., Mazzulli T.. 2003; Allergic fungal sinusitis associated with Trichoderma longibrachiatum. J Clin Microbiol41:5333–5336
    [Google Scholar]
  56. Tanis B. C., van der Pijl H., van Ogtrop M. L., Kibbelaar R. E., Chang P. C.. 1995; Fatal fungal peritonitis by Trichoderma longibrachiatum complicating peritoneal dialysis. Nephrol Dial Transplant10:114–116
    [Google Scholar]
  57. Tavaré S.. 1986; Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology – DNA Sequence Analysis pp57–86 Edited by Miura R. M. Providence, RI: American Mathematical Society;
    [Google Scholar]
  58. Taylor J. W., Geiser D. M., Burt A., Koufopanou V.. 1999; The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev12:126–146
    [Google Scholar]
  59. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  60. Thrane U., Poulsen S. B., Nirenberg H. I., Lieckfeldt E.. 2001; Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol Lett203:249–255
    [Google Scholar]
  61. Turner D., Kovacs W., Kuhls K., Lieckfeldt E., Peter B., Arisan-Atac I., Strauss J., Samuels G. J., Börner T., Kubicek C. P.. 1997; Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. Mycol Res101:449–459
    [Google Scholar]
  62. Vizcaíno J. A., Sanz L., Basilio A., Vicente F., Gutiérrez F., Hermosa M. R., Monte E.. 2005; Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res109:1397–1406
    [Google Scholar]
  63. Walsh T. J., Groll A. H.. 1999; Emerging fungal pathogens: evolving challenges to immunocompromised patients for the twenty-first century. Transpl Infect Dis1:247–261
    [Google Scholar]
  64. Wilgenbusch J. C., Warren D. L., Swofford D. L.. 2004; AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference.
    [Google Scholar]
  65. Wuczkowski M., Druzhinina I. S., Gherbawy Y., Klug B., Prillinger H. J., Kubicek C. P.. 2003; Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res158:125–133
    [Google Scholar]
  66. Zhang C. L., Druzhinina I. S., Kubicek C. P., Xu T.. 2005; Biodiversity of Trichoderma in China: evidence for a North to South difference of species distribution in East Asia. FEMS Microbiol Lett251:251–257
    [Google Scholar]
  67. Zhang N., O'Donnell K., Sutton D. A., Nalim F. A., Summerbell R. C., Padhye A. A., Geiser D. M.. 2006; Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol44:2186–2190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021196-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021196-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error