1887

Abstract

We have used an model of intestinal M cells to examine the mechanisms by which translocates across these specialized cells, which constitute a primary site of infection of the mammalian host. can invade cultured cells by deploying a type III secretion system (TTSS) encoded within pathogenicity island 1 (SPI-1) to translocate effector proteins into the host cell cytoplasm that trigger cellular responses, including prominent cytoskeletal rearrangements. After enters the host cell, a second TTSS encoded in SPI-2 modulates intracellular trafficking and enables the bacteria to replicate within a modified vacuolar compartment. Within the host intestine, specialized antigen-sampling M cells, which reside in the epithelium overlying lymphoid tissues in the gut, are a preferential site of invasion. The mechanisms of infection of M cells remain poorly defined and it is not known whether either SPI-1 or SPI-2 is required for infection of these cells. To address these questions we have employed an M cell model involving co-culture of polarized Caco-2 intestinal epithelial cells with Raji B cells. serovar Typhimurium translocated across Caco-2/Raji co-cultures to a much greater extent than they cross native Caco-2 cell monolayers. translocation was greatly reduced by heat treatment or fixation, suggesting that processes distinct from the sampling of inert particles are the main determinants of bacterial translocation. Translocation across both mono-cultured and co-cultured Caco-2 cells was partially inhibited by treatment with the dynamin inhibitor dynasore, but resistant to EIPA, an inhibitor of macropinocytosis. There was no difference between the abilities of wild-type Typhimurium and mutants lacking multiple SPI-1 effectors to translocate across the M cell model, although the SPI-1 effector mutants were somewhat attenuated for translocation across native Caco-2 layers. There was also no difference between wild-type and SPI-2 mutants in M cell translocation. Together these data suggest that that SPI-1 and SPI-2 are dispensable for rapid M cell translocation and that infection at these specialized epithelial sites involves distinctive mechanisms that are not reliably modelled using conventional cell culture infection models.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021162-0
2008-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3887.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021162-0&mimeType=html&fmt=ahah

References

  1. Amstutz, B., Gastaldelli, M., Kalin, S., Imelli, N., Boucke, K., Wandeler, E., Mercer, J., Hemmi, S. & Greber, U. F. ( 2008; ). Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 27, 956–969.[CrossRef]
    [Google Scholar]
  2. Blanco, L. P. & DiRita, V. J. ( 2006; ). Bacterial-associated cholera toxin and GM1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system. Cell Microbiol 8, 982–998.[CrossRef]
    [Google Scholar]
  3. Brawn, L. C., Hayward, R. D. & Koronakis, V. ( 2007; ). Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1, 63–75.[CrossRef]
    [Google Scholar]
  4. Brayden, D. J., Jepson, M. A. & Baird, A. W. ( 2005; ). Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov Today 10, 1145–1157.[CrossRef]
    [Google Scholar]
  5. Brown, N. F., Vallance, B. A., Coombes, B. K., Valdez, Y., Coburn, B. A. & Finlay, B. B. ( 2005; ). Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog 1, e32 [CrossRef]
    [Google Scholar]
  6. Buda, A., Sands, C. & Jepson, M. A. ( 2005; ). Use of fluorescence imaging to investigate the structure and function of intestinal M cells. Adv Drug Deliv Rev 57, 123–134.[CrossRef]
    [Google Scholar]
  7. Carter, P. B. & Collins, F. M. ( 1974; ). The route of enteric infection in normal mice. J Exp Med 139, 1189–1203.[CrossRef]
    [Google Scholar]
  8. Clark, M. A., Jepson, M. A., Simmons, N. L. & Hirst, B. H. ( 1994; ). Preferential interaction of Salmonella typhimurium with mouse Peyer's patch M cells. Res Microbiol 145, 543–552.[CrossRef]
    [Google Scholar]
  9. Clark, M. A., Reed, K. A., Lodge, J., Stephen, J., Hirst, B. H. & Jepson, M. A. ( 1996; ). Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion of cultured cells. Infect Immun 64, 4363–4368.
    [Google Scholar]
  10. Clark, M. A., Hirst, B. H. & Jepson, M. A. ( 1998; ). Inoculum composition and Salmonella pathogenicity island 1 regulate M-cell invasion and epithelial destruction by Salmonella typhimurium. Infect Immun 66, 724–731.
    [Google Scholar]
  11. Cossart, P. & Sansonetti, P. J. ( 2004; ). Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248.[CrossRef]
    [Google Scholar]
  12. Daniels, J. J., Autenrieth, I. B. & Goebel, W. ( 2000; ). Interaction of Listeria monocytogenes with the intestinal epithelium. FEMS Microbiol Lett 190, 323–328.[CrossRef]
    [Google Scholar]
  13. des Rieux, A., Fievez, V., Theate, I., Mast, J., Preat, V. & Schneider, Y. J. ( 2007; ). An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci 30, 380–391.[CrossRef]
    [Google Scholar]
  14. Fallman, M. & Gustavsson, A. ( 2005; ). Cellular mechanisms of bacterial internalization counteracted by Yersinia. Int Rev Cytol 246, 135–188.
    [Google Scholar]
  15. Francis, C. L., Ryan, T. A., Jones, B. D., Smith, S. J. & Falkow, S. ( 1993; ). Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364, 639–642.[CrossRef]
    [Google Scholar]
  16. Fretz, M., Jin, J., Conibere, R., Penning, N. A., Al-Taei, S., Storm, G., Futaki, S., Takeuchi, T., Nakase, I. & Jones, A. T. ( 2006; ). Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine. J Control Release 116, 247–254.[CrossRef]
    [Google Scholar]
  17. Frost, A. J., Bland, A. P. & Wallis, T. S. ( 1997; ). The early dynamic response of the calf ileal epithelium to Salmonella typhimurium. Vet Pathol 34, 369–386.[CrossRef]
    [Google Scholar]
  18. Galan, J. E. ( 2001; ). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17, 53–86.[CrossRef]
    [Google Scholar]
  19. Galan, J. E. & Curtiss, R., III ( 1989; ). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A 86, 6383–6387.[CrossRef]
    [Google Scholar]
  20. Galan, J. E. & Wolf-Watz, H. ( 2006; ). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573.[CrossRef]
    [Google Scholar]
  21. Giacomodonato, M. N., Uzzau, S., Bacciu, D., Caccuri, R., Sarnacki, S. H., Rubino, S. & Cerquetti, M. C. ( 2007; ). SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153, 1221–1228.[CrossRef]
    [Google Scholar]
  22. Gullberg, E., Leonard, M., Karlsson, J., Hopkins, A. M., Brayden, D., Baird, A. W. & Artursson, P. ( 2000; ). Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun 279, 808–813.[CrossRef]
    [Google Scholar]
  23. Hensel, M., Shea, J. E., Raupach, B., Monack, D., Falkow, S., Gleeson, C., Kubo, T. & Holden, D. W. ( 1997; ). Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Mol Microbiol 24, 155–167.[CrossRef]
    [Google Scholar]
  24. Jepson, M. A. & Clark, M. A. ( 1998; ). Studying M cells and their role in infection. Trends Microbiol 6, 359–365.[CrossRef]
    [Google Scholar]
  25. Jepson, M. A. & Clark, M. A. ( 2001; ). The role of M cells in Salmonella infection. Microbes Infect 3, 1183–1190.[CrossRef]
    [Google Scholar]
  26. Jepson, M. A., Collares-Buzato, C. B., Clark, M. A., Hirst, B. H. & Simmons, N. L. ( 1995; ). Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect Immun 63, 356–359.
    [Google Scholar]
  27. Jones, B. D., Ghori, N. & Falkow, S. ( 1994; ). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180, 15–23.[CrossRef]
    [Google Scholar]
  28. Kerneis, S., Bogdanova, A., Kraehenbuhl, J. P. & Pringault, E. ( 1997; ). Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949–952.[CrossRef]
    [Google Scholar]
  29. Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C. & Kirchhausen, T. ( 2006; ). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10, 839–850.[CrossRef]
    [Google Scholar]
  30. Maresca, M., Dumay, E., Fantini, J. & Caporiccio, B. ( 2007; ). Selective transport of staphylococcal enterotoxin A through in vitro generated human M cells. Microbes Infect 9, 1507–1510.[CrossRef]
    [Google Scholar]
  31. Martinez-Argudo, I., Sands, C. & Jepson, M. A. ( 2007; ). Translocation of enteropathogenic Escherichia coli across an in vitro M cell model is regulated by its type III secretion system. Cell Microbiol 9, 1538–1546.[CrossRef]
    [Google Scholar]
  32. Ohl, M. E. & Miller, S. I. ( 2001; ). Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52, 259–274.[CrossRef]
    [Google Scholar]
  33. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. ( 2002; ). The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A 99, 167–172.[CrossRef]
    [Google Scholar]
  34. Penheiter, K. L., Mathur, N., Giles, D., Fahlen, T. & Jones, B. D. ( 1997; ). Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches. Mol Microbiol 24, 697–709.[CrossRef]
    [Google Scholar]
  35. Pullinger, G. D., Paulin, S. M., Charleston, B., Watson, P. R., Bowen, A. J., Dziva, F., Morgan, E., Villarreal-Ramos, B., Wallis, T. S. & Stevens, M. P. ( 2007; ). Systemic translocation of Salmonella enterica serovar Dublin in cattle occurs predominantly via efferent lymphatics in a cell-free niche and requires type III secretion system 1 (T3SS-1) but not T3SS-2. Infect Immun 75, 5191–5199.[CrossRef]
    [Google Scholar]
  36. Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., Lawhon, S., Khare, S., Adams, L. G. & Baumler, A. J. ( 2005; ). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 73, 146–154.[CrossRef]
    [Google Scholar]
  37. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996; ). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  38. Takeuchi, A. ( 1967; ). Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50, 109–136.
    [Google Scholar]
  39. Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J., Falkow, S., Valdivia, R., Brown, W., Le, M., Berggren, R., Parks, W. T. & Fang, F. C. ( 1999; ). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808.[CrossRef]
    [Google Scholar]
  40. Veiga, E., Guttman, J. A., Bonazzi, M., Boucrot, E., Toledo-Arana, A., Lin, A. E., Enninga, J., Pizarro-Cerdá, J., Finlay, B. B. & other authors ( 2007; ). Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe 2, 340–351.[CrossRef]
    [Google Scholar]
  41. Wadia, J. S., Stan, R. V. & Dowdy, S. F. ( 2004; ). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10, 310–315.[CrossRef]
    [Google Scholar]
  42. Waterman, S. R. & Holden, D. W. ( 2003; ). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5, 501–511.[CrossRef]
    [Google Scholar]
  43. Zhang, S., Santos, R. L., Tsolis, R. M., Stender, S., Hardt, W. D., Baumler, A. J. & Adams, L. G. ( 2002; ). The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun 70, 3843–3855.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021162-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021162-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error