1887

Abstract

The Cch1 protein of the yeast is a homologue of the pore-forming subunit of mammalian voltage-gated Ca channels (VGCCs), and it constitutes a high-affinity Ca-influx system with the Mid1 protein in this organism. Here, we characterized the kinetic property of a putative Cch1–Mid1 Ca channel overexpressed in cells, and showed that the L-type VGCC blockers nifedipine and verapamil partially inhibited Cch1–Mid1 activity, but typical P/Q-, N-, R- and T-type VGCC blockers did not inhibit activity. In contrast, a third L-type VGCC blocker, diltiazem, increased Cch1–Mid1 activity. Diltiazem did not increase Ca uptake in the Δ and Δ single mutants and the Δ Δ double mutant, indicating that the diltiazem-induced increase in Ca uptake is completely dependent on Cch1–Mid1. These results suggest that Cch1 is pharmacologically similar to L-type VGCCs, but the interactions between Cch1 and the L-type VGCC blockers are more complicated than expected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021089-0
2008-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3775.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021089-0&mimeType=html&fmt=ahah

References

  1. Bonilla, M., Nastase, K. K. & Cunningham, K. W. ( 2002; ). Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J 21, 2343–2353.[CrossRef]
    [Google Scholar]
  2. Caretta, A., Sorbi, R. T., Stein, P. J. & Tirindelli, R. ( 1991; ). Diltiazem at high concentration increases the ionic permeability of biological membranes. J Membr Biol 122, 203–213.[CrossRef]
    [Google Scholar]
  3. Catterall, W. A. ( 1995; ). Structure and function of voltage-gated ion channels. Annu Rev Biochem 64, 493–531.[CrossRef]
    [Google Scholar]
  4. Catterall, W. A. ( 2000; ). Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16, 521–555.[CrossRef]
    [Google Scholar]
  5. Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. ( 2005; ). International union of pharmacology. XLVIII. Nomenclature and structure–function relationships of voltage-gated calcium channels. Pharmacol Rev 57, 411–425.[CrossRef]
    [Google Scholar]
  6. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. & Thompson, J. D. ( 2003; ). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31, 3497–3500.[CrossRef]
    [Google Scholar]
  7. Fischer, M., Schnell, N., Chattaway, J., Davies, P., Dixon, G. & Sanders, D. ( 1997; ). The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419, 259–262.[CrossRef]
    [Google Scholar]
  8. Gietz, R. D. & Sugino, A. ( 1988; ). New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.[CrossRef]
    [Google Scholar]
  9. Gorenstein, C., Atkinson, K. D. & Falke, E. V. ( 1978; ). Isolation and characterization of an actinomycin D-senstitive mutant of Saccharomyces cerevisiae. J Bacteriol 136, 142–147.
    [Google Scholar]
  10. Hashimoto, M., Teramoto, N., Zhu, H.-L., Takahashi, K. & Ito, Y. ( 2006; ). Comparative studies of AJG049, a novel Ca2+ channel antagonist, on voltage-dependent L-type Ca2+ currents in intestinal and smooth muscle. Br J Pharmacol 149, 155–162.
    [Google Scholar]
  11. Hille, B. ( 1992; ). Ionic Channels of Excitable Membranes, 2nd edn. Sunderland, MA: Sinauer Associates.
  12. Iida, H., Yagawa, Y. & Anraku, Y. ( 1990; ). Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway: a study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem 265, 13391–13399.
    [Google Scholar]
  13. Iida, H., Nakamura, H., Ono, T., Okumura, M. S. & Anraku, Y. ( 1994; ). MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14, 8529–8271.
    [Google Scholar]
  14. Iida, K., Tada, T. & Iida, H. ( 2004; ). Molecular cloning in yeast by in vivo homologous recombination of the yeast putative α 1 subunit of the voltage-gated calcium channel. FEBS Lett 576, 291–296.[CrossRef]
    [Google Scholar]
  15. Iida, K., Teng, T., Tada, T., Saka, A., Tamai, M., Izumi-Nakaseko, H., Adachi-Akahane, S. & Iida, H. ( 2007; ). Essential, completely conserved glycine residue in the domain III S2–S3 linker of voltage-gated calcium channel α 1 subunits in yeast and mammals. J Biol Chem 282, 25659–25667.[CrossRef]
    [Google Scholar]
  16. Kanzaki, M., Nagasawa, M., Kijima, I., Sato, C., Naruse, K., Sokabe, M. & Iida, H. ( 1999; ). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285, 882–886. [report clarification in Science (2000) 288, 1347][CrossRef]
    [Google Scholar]
  17. Kaur, R., Cataño, I. & Cormack, B. P. ( 2004; ). Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: role of calcium signaling and mitochondria. Antimicrob Agents Chemother 48, 1600–1613.[CrossRef]
    [Google Scholar]
  18. Liu, M., Du, P., Heinrich, G., Cox, G. M. & Gelli, A. ( 2006; ). Cch1 mediates calcium entry in Cryptococcus neoformans and is essential in low-calcium environments. Eukaryot Cell 5, 1788–1796.[CrossRef]
    [Google Scholar]
  19. Matsumoto, T. K., Ellsmore, A. J., Cessna, S. G., Low, P. S., Pardo, J. M., Bressan, R. A. & Hasegawa, P. M. ( 2002; ). An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277, 33075–33080.[CrossRef]
    [Google Scholar]
  20. Mitterdorfer, J., Grabner, M., Kraus, R. L., Hering, S., Prinz, H., Glossmann, H. & Striessnig, J. ( 1998; ). Molecular basis of drug interaction with L-type Ca2+ channels. J Bioenerg Biomembr 30, 319–334.[CrossRef]
    [Google Scholar]
  21. Morel, N., Buryi, V., Gomez, J.-P., Christen, M.-O. & Godfraind, T. ( 1998; ). The action of calcium channel blockers on recombinant L-type calcium channel α 1-subunits. Br J Pharmacol 125, 1005–1012.[CrossRef]
    [Google Scholar]
  22. Muller, E. M., Locke, E. G. & Cunningham, K. W. ( 2001; ). Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159, 1527–1538.
    [Google Scholar]
  23. Paidhungat, M. & Garrett, S. ( 1997; ). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17, 6339–6347.
    [Google Scholar]
  24. Schindler, D. & Davies, J. ( 1975; ). Inhibitors of macromolecular synthesis in yeast. Methods Cell Biol 12, 17–38.
    [Google Scholar]
  25. Scott, J. H. & Schekman, R. ( 1980; ). Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142, 414–423.
    [Google Scholar]
  26. Segel, I. H. ( 1976; ). Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd edn. New York: John Wiley.
  27. Striessnig, J. ( 1999; ). Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 9, 242–269.[CrossRef]
    [Google Scholar]
  28. Triggle, D. J. ( 1990; ). Calcium antagonists. In Cardiovascular Pharmacology, 3rd edn, pp. 107–160. Edited by M. Antonaccio. New York: Raven Press.
  29. Viladevall, L., Serrano, R., Ruiz, A., Domenech, G., Giraldo, J., Barceló, A. & Ariño, J. ( 2004; ). Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279, 43614–43624.[CrossRef]
    [Google Scholar]
  30. Yamakage, M. & Namiki, A. ( 2002; ). Calcium channels – basic aspects of their structure, function and gene encoding; anesthetic action on the channels – a review. Can J Anaesth 49, 151–164.[CrossRef]
    [Google Scholar]
  31. Yu, L., Zhang, W., Wang, L., Yang, J., Liu, T., Peng, J., Leng, W., Chen, L., Li, R. & Jin, Q. ( 2007; ). Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother 51, 144–153.[CrossRef]
    [Google Scholar]
  32. Zelter, A., Bencina, M., Bowman, B. J., Yarden, O. & Read, N. D. ( 2004; ). A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol 41, 827–841.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021089-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021089-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error