1887

Abstract

strain R1 synthesizes deinoxanthin, a unique carotenoid product, which contributes to cell resistance following various stresses. The biosynthetic pathway of deinoxanthin is unclear, although several enzymes are presumed to be involved. The gene () predicted by gene homologue analysis to encode carotenoid 3′,4′-desaturase (CrtD) was deleted to investigate its function. A mutant deficient in the gene homologue of () was also constructed to verify the catalytic function of the gene product in the native host. Carotenoid analysis of the resultant mutants verified that DR2250 encodes carotenoid 3′,4′-desaturase, which catalyses the C-3′,4′-desaturation of the monocyclic precursor of deinoxanthin but not acyclic carotenoids. Mutation of the gene homologue of () resulted in accumulation of lycopene, confirming that it encodes the lycopene cyclase in the native host. The lack of CrtD decreased the antioxidant capacity of the mutant deficient in compared with the wild-type, indicating that the C-3′,4′-desaturation step contributes to the antioxidant capacity of deinoxanthin in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021071-0
2008-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3697.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021071-0&mimeType=html&fmt=ahah

References

  1. Albrecht, M., Takaichi, S., Steiger, S., Wang, Z. & Sandmann, G. ( 2000; ). Novel hydroxycarotenoids with improved antioxidative properties produced by gene combination in Escherichia coli. Nat Biotechnol 18, 843–846.[CrossRef]
    [Google Scholar]
  2. Armstrong, G. A. & Hearst, J. E. ( 1996; ). Carotenoids 2. Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10, 228–237.
    [Google Scholar]
  3. Armstrong, G. A., Alberti, M., Leach, F. & Hearst, J. E. ( 1989; ). Nucleotide sequence, organization and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216, 254–268.[CrossRef]
    [Google Scholar]
  4. Armstrong, G. A., Alberti, M. & Hearst, J. E. ( 1990; ). Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci U S A 87, 9975–9979.[CrossRef]
    [Google Scholar]
  5. Bartley, G. E., Schmidhauser, T. J., Yanofsky, C. & Scolnik, P. A. ( 1990; ). Carotenoid desaturases from Rhodobacter capsulatus and Neurospora crassa are structurally and functionally conserved and contain domains homologous to flavoprotein disulfide oxidoreductases. J Biol Chem 265, 16020–16024.
    [Google Scholar]
  6. Cox, M. M. & Battista, J. R. ( 2005; ). Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3, 882–892.[CrossRef]
    [Google Scholar]
  7. Cunningham, F. X., Lee, H. & Gantt, E. ( 2007; ). Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell 6, 533–545.[CrossRef]
    [Google Scholar]
  8. Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Venkateswaran, A., Hess, M., Omelchenko, M. V., Kostandarithes, H. M. & other authors ( 2004; ). Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306, 1025–1028.[CrossRef]
    [Google Scholar]
  9. Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Leapman, R. D., Lai, B., Ravel, B., Li, S. W. & other authors ( 2007; ). Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5, e92 [CrossRef]
    [Google Scholar]
  10. Deby-Dupont, G., Deby, C., Mouithys-Mickalad, A., Hoebeke, M., Mathy-Hartert, M., Jadoul, L., Vandenberghe, A. & Lamy, M. ( 1998; ). The antibiotic ceftazidime is a singlet oxygen quencher as demonstrated by ultra-weak chemiluminescence and by inhibition of AAP consumption. Biochim Biophys Acta 1379, 61–68.[CrossRef]
    [Google Scholar]
  11. Fraser, P. D. & Bramley, P. M. ( 2004; ). The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43, 228–265.[CrossRef]
    [Google Scholar]
  12. Gao, G., Lu, H., Huang, L. & Hua, Y. ( 2005; ). Construction of DNA damage response gene pprI function deficient and function complementary mutants in Deinococcus radiodurans. Chin Sci Bull 50, 311–316.
    [Google Scholar]
  13. Giraud, E., Hannibal, L., Fardoux, J., Jaubert, M., Jourand, P., Dreyfus, B., Sturgis, J. N. & Verméglio, A. ( 2004; ). Two distinct crt gene clusters for two different functional classes of carotenoid in Bradyrhizobium. J Biol Chem 279, 15076–15083.[CrossRef]
    [Google Scholar]
  14. Harada, J., Nagashima, K. V., Takaichi, S., Misawa, N., Matsuura, K. & Shimada, K. ( 2001; ). Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene. Plant Cell Physiol 42, 1112–1118.[CrossRef]
    [Google Scholar]
  15. Imlay, J. A. ( 2003; ). Pathways of oxidative damage. Annu Rev Microbiol 57, 395–418.[CrossRef]
    [Google Scholar]
  16. Jin, M., OuYang, X., Yang, Y. & Ren, Q. ( 2007; ). Quantification of tripdiolide in human whole blood by liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry. Talanta 72, 582–586.[CrossRef]
    [Google Scholar]
  17. Khairnar, N. P., Misra, H. S. & Apte, S. K. ( 2003; ). Pyrroloquinolinequinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun 312, 303–308.[CrossRef]
    [Google Scholar]
  18. Kobayashi, M. ( 2000; ). In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54, 550–555.[CrossRef]
    [Google Scholar]
  19. Kovács, A. T., Rákhely, G. & Kovács, K. L. ( 2003; ). Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 69, 3093–3102.[CrossRef]
    [Google Scholar]
  20. Krinsky, N. I. & Johnson, E. J. ( 2005; ). Carotenoid actions and their relation to health and disease. Mol Aspects Med 26, 459–516.[CrossRef]
    [Google Scholar]
  21. Lang, H. P., Cogdell, R. J., Takaichi, S. & Hunter, C. N. ( 1995; ). Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol 177, 2064–2073.
    [Google Scholar]
  22. Lemee, L., Peuchant, E., Clerc, M., Brunner, M. & Pfander, H. ( 1997; ). Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans. Tetrahedron 53, 919–926.[CrossRef]
    [Google Scholar]
  23. Makarova, K. S., Aravind, L., Wolf, V. I., Tatusov, R. L., Minton, K. W., Koonin, E. V. & Daly, M. J. ( 2001; ). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65, 44–79.[CrossRef]
    [Google Scholar]
  24. Maresca, J. A. & Bryant, D. A. ( 2006; ). Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 188, 6217–6223.[CrossRef]
    [Google Scholar]
  25. Maresca, J. A., Graham, J. E. & Bryant, D. A. ( 2008; ). The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynth Res 97, 121–140.[CrossRef]
    [Google Scholar]
  26. Markillie, L. M., Varnum, S. M., Hradecky, P. & Wong, K. ( 1999; ). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181, 666–669.
    [Google Scholar]
  27. Martínez-Férez, I. M. & Vioque, A. ( 1992; ). Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. Plant Mol Biol 18, 981–983.[CrossRef]
    [Google Scholar]
  28. Meima, R. & Lidstrom, M. E. ( 2000; ). Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coliD. radiodurans shuttle vectors. Appl Environ Microbiol 66, 3856–3867.[CrossRef]
    [Google Scholar]
  29. Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K. & Harashima, K. ( 1990; ). Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172, 6704–6712.
    [Google Scholar]
  30. Misra, H. S., Khairnar, N. P., Barik, A., Priyadarsini, K. I., Mohan, H. & Apte, S. K. ( 2004; ). Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett 578, 26–30.[CrossRef]
    [Google Scholar]
  31. Mohamed, H. E. & Vermaas, W. ( 2004; ). Slr1293 in Synechocystis sp. strain PCC 6803 is the C-3′,4′ desaturase (CrtD) involved in myxoxanthophyll biosynthesis. J Bacteriol 186, 5621–5628.[CrossRef]
    [Google Scholar]
  32. Nishida, Y., Adachi, K., Kasai, H., Shizuri, Y., Shindo, K., Sawabe, A., Komemushi, S., Miki, W. & Misawa, N. ( 2005; ). Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 71, 4286–4296.[CrossRef]
    [Google Scholar]
  33. Ouchane, S., Picaud, M., Vernotte, C., Reiss-Husson, F. & Astier, C. ( 1997; ). Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. J Biol Chem 272, 1670–1676.[CrossRef]
    [Google Scholar]
  34. Saito, T., Ohyama, Y., Ide, H., Ohta, S. & Yamamoto, O. ( 1998; ). A carotenoid pigment of the radioresistant bacterium Deinococcus radiodurans. Microbios 95, 79–90.
    [Google Scholar]
  35. Steiger, S., Astier, C. & Sandmann, G. ( 2000; ). Substrate specificity of the expressed carotenoid 3,4-desaturase from Rubrivivax gelatinosus reveals the detailed reaction sequence to spheroidene and spirilloxanthin. Biochem J 349, 635–640.[CrossRef]
    [Google Scholar]
  36. Takaichi, S. ( 2000; ). Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynth Res 65, 93–99.[CrossRef]
    [Google Scholar]
  37. Takaichi, S. & Shimada, K. ( 1992; ). Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213, 374–385.
    [Google Scholar]
  38. Tao, L. & Cheng, Q. ( 2004; ). Novel β-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Mol Genet Genomics 272, 530–537.[CrossRef]
    [Google Scholar]
  39. Tao, L., Picataggio, S., Rouvière, P. E. & Cheng, Q. ( 2004; ). Asymmetrically acting lycopene β-cyclases (CrtLm) from non-photosynthetic bacteria. Mol Genet Genomics 271, 180–188.[CrossRef]
    [Google Scholar]
  40. Teramoto, M., Rählert, N., Misawa, N. & Sandmann, G. ( 2004; ). 1-Hydroxy monocyclic carotenoid 3,4-dehydrogenase from a marine bacterium that produces myxol. FEBS Lett 570, 184–188.[CrossRef]
    [Google Scholar]
  41. Tian, B., Xu, Z., Sun, Z., Lin, J. & Hua, Y. ( 2007; ). Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 1770, 902–911.[CrossRef]
    [Google Scholar]
  42. White, O., Eisen, J. A., Heidelberg, J. F., Hickey, E. K., Peterson, J. D., Dodson, R. J., Haft, D. H., Gwinn, M. L., Nelson, W. C. & other authors ( 1999; ). Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577.[CrossRef]
    [Google Scholar]
  43. Xu, Z., Tian, B., Sun, Z., Lin, J. & Hua, Y. ( 2007; ). Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 153, 1642–1652.[CrossRef]
    [Google Scholar]
  44. Zhang, L., Yang, Q., Luo, X., Fang, C., Zhang, Q. & Tang, Y. ( 2007; ). Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol 188, 411–419.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021071-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021071-0
Loading

Data & Media loading...

Supplements

Construction of plasmid pRADK (Gao , 2005).

IMAGE

[PDF file of Supplementary Figs S2-S4](225 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error