1887

Abstract

The transcriptional activator PrfA is required for the expression of virulence factors necessary for pathogenesis. PrfA is believed to become activated following entry into the cytosol of infected host cells, resulting in the induction of target genes whose products are required for bacterial intracellular growth and cell-to-cell spread. Several mutations have been identified that appear to lock PrfA into its highly activated cytosolic form (known as * mutations). In this study PrfA and five PrfA* mutant proteins exhibiting differing degrees of activity were purified and analysed to define the influences of the mutations on distinct aspects of PrfA activity. Based on limited proteolytic digestion, conformational changes were detected for the PrfA* mutant proteins in comparison to wild-type PrfA. For all but one mutant (PrfA Y63C), the DNA binding affinity as measured by electophoretic mobility shift assay appeared to directly correlate with levels of PrfA mutational activation, such that the high-activity mutants exhibited the largest increases in DNA binding affinity and moderately activated mutants exhibited more moderate increases. Surprisingly, the ability of PrfA and PrfA* mutants to form dimers in solution appeared to inversely correlate with levels of PrfA-dependent gene expression. Based on comparisons of protein activity and structural similarities with PrfA family members Crp and CooA, the mutations modify distinct aspects of PrfA activity that include DNA binding and protein–protein interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021063-0
2008-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3579.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021063-0&mimeType=html&fmt=ahah

References

  1. Bishop, D. K. & Hinrichs, D. J. ( 1987; ). Adoptive transfer of immunity to Listeria monocytogenes: the influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139, 2005–2009.
    [Google Scholar]
  2. Böckmann, R., Dickneite, C., Middendorf, B., Goebel, W. & Sokolovic, Z. ( 1996; ). Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22, 643–653.[CrossRef]
    [Google Scholar]
  3. Böckmann, R., Dickneite, C., Goebel, W. & Bohne, J. ( 2000; ). PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol Microbiol 36, 487–497.[CrossRef]
    [Google Scholar]
  4. Bubert, A., Sokolovic, Z., Chun, S.-K., Papatheodorou, L., Simm, A. & Goebel, W. ( 1999; ). Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261, 323–336.
    [Google Scholar]
  5. Busby, S. & Ebright, R. H. ( 1999; ). Transcription activation by catabolite activator protein (CAP). J Mol Biol 293, 199–213.[CrossRef]
    [Google Scholar]
  6. Camilli, A., Paynton, C. R. & Portnoy, D. A. ( 1989; ). Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a macrophage cell line. Proc Natl Acad Sci U S A 86, 5522–5526.[CrossRef]
    [Google Scholar]
  7. Chakraborty, T., Leimeister-Wachter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T. & Notermans, S. ( 1992; ). Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174, 568–574.
    [Google Scholar]
  8. Eiting, M., Hageluken, G., Schubert, W. D. & Heinz, D. W. ( 2005; ). The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol Microbiol 56, 433–446.[CrossRef]
    [Google Scholar]
  9. Freitag, N. E. ( 2006; ). From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression. Future Microbiol 1, 89–101.[CrossRef]
    [Google Scholar]
  10. Freitag, N. E. & Jacobs, K. E. ( 1999; ). Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect Immun 67, 1844–1852.
    [Google Scholar]
  11. Freitag, N. E., Youngman, P. & Portnoy, D. A. ( 1992; ). Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J Bacteriol 174, 1293–1298.
    [Google Scholar]
  12. Garges, S. & Adhya, S. ( 1985; ). Sites of allosteric shift in the structure of cyclic AMP receptor protein. Cell 41, 745–751.[CrossRef]
    [Google Scholar]
  13. Gray, M. J., Freitag, N. E. & Boor, K. J. ( 2006; ). How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun 74, 2505–2512.[CrossRef]
    [Google Scholar]
  14. Greene, S. L. & Freitag, N. E. ( 2003; ). Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiology 149, 111–120.[CrossRef]
    [Google Scholar]
  15. Harman, J. G., McKenney, K. & Peterkofsky, A. ( 1986; ). Structure–function analysis of three cAMP-independent forms of the cAMP receptor protein. J Biol Chem 261, 16332–16339.
    [Google Scholar]
  16. Karow, M. L. & Piggot, P. J. ( 1995; ). Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69–74.[CrossRef]
    [Google Scholar]
  17. Kim, J., Adhya, S. & Garges, S. ( 1992; ). Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc Natl Acad Sci U S A 89, 9700–9704.[CrossRef]
    [Google Scholar]
  18. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. ( 1993; ). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62, 749–795.[CrossRef]
    [Google Scholar]
  19. Korner, H., Sofia, H. J. & Zumft, W. G. ( 2003; ). Phylogeny of the bacterial superfamily of Crp–Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27, 559–592.[CrossRef]
    [Google Scholar]
  20. Lawson, C. L., Swigon, D., Murakami, K. S., Darst, S. A., Berman, H. M. & Ebright, R. H. ( 2004; ). Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14, 10–20.[CrossRef]
    [Google Scholar]
  21. Lazazzera, B. A., Bates, D. M. & Kiley, P. J. ( 1993; ). The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev 7, 1993–2005.[CrossRef]
    [Google Scholar]
  22. Leduc, J., Thorsteinsson, M. V., Gaal, T. & Roberts, G. P. ( 2001; ). Mapping CooA–RNA polymerase interactions. Identification of activating regions 2 and 3 in CooA, the co-sensing transcriptional activator. J Biol Chem 276, 39968–39973.[CrossRef]
    [Google Scholar]
  23. Leimeister-Wachter, M., Haffner, C., Domann, E., Goebel, W. & Chakraborty, T. ( 1990; ). Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc Natl Acad Sci U S A 87, 8336–8340.[CrossRef]
    [Google Scholar]
  24. Mauder, N., Ecke, R., Mertins, S., Loeffler, D. I., Seidel, G., Sprehe, M., Hillen, W., Goebel, W. & Muller-Altrock, S. ( 2006; ). Species-specific differences in the activity of PrfA, the key regulator of listerial virulence genes. J Bacteriol 188, 7941–7956.[CrossRef]
    [Google Scholar]
  25. Mengaud, J., Vicente, M. F. & Cossart, P. ( 1989; ). Transcriptional mapping and nucleotide sequence of the Listeria monocytogenes hlyA region reveal structural features that may be involved in regulation. Infect Immun 57, 3695–3701.
    [Google Scholar]
  26. Miner, M., Port, G., Bouwer, H., Chang, J. & Freitag, N. ( 2008; ). A novel prfA mutation that promotes Listeria monocytogenes cytosol entry but reduces bacterial spread and cytotoxicity. Microb Pathog 45, 273–281.[CrossRef]
    [Google Scholar]
  27. Moors, M. A., Levitt, B., Youngman, P. & Portnoy, D. A. ( 1999; ). Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67, 131–139.
    [Google Scholar]
  28. Mueller, K. J. & Freitag, N. E. ( 2005; ). Pleiotropic enhancement of bacterial pathogenesis resulting from the constitutive activation of the Listeria monocytogenes regulatory factor PrfA. Infect Immun 73, 1917–1926.[CrossRef]
    [Google Scholar]
  29. Niu, W., Kim, Y., Tau, G., Heyduk, T. & Ebright, R. H. ( 1996; ). Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 87, 1123–1134.[CrossRef]
    [Google Scholar]
  30. Pizarro-Cerda, J. & Cossart, P. ( 2006; ). Subversion of cellular functions by Listeria monocytogenes. J Pathol 208, 215–223.[CrossRef]
    [Google Scholar]
  31. Port, G. C. & Freitag, N. E. ( 2007; ). Identification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA. Infect Immun 75, 5886–5897.[CrossRef]
    [Google Scholar]
  32. Ripio, M.-T., Dominguez-Bernal, G., Lara, M., Suarez, M. & Vazquez-Boland, J.-A. ( 1997; ). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol 179, 1533–1540.
    [Google Scholar]
  33. Scortti, M., Monzo, H. J., Lacharme-Lora, L., Lewis, D. A. & Vazquez-Boland, J. A. ( 2007; ). The PrfA virulence regulon. Microbes Infect 9, 1196–1207.[CrossRef]
    [Google Scholar]
  34. Shetron-Rama, L. M., Marquis, H., Bouwer, H. G. A. & Freitag, N. E. ( 2002; ). Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 70, 1087–1096.[CrossRef]
    [Google Scholar]
  35. Shetron-Rama, L. M., Mueller, K., Bravo, J. M., Bouwer, H. G., Way, S. S. & Freitag, N. E. ( 2003; ). Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 48, 1537–1551.[CrossRef]
    [Google Scholar]
  36. Tan, G. S., Kelly, P., Kim, J. & Wartell, R. M. ( 1991; ). Comparison of cAMP receptor protein (CRP) and a cAMP-independent form of CRP by Raman spectroscopy and DNA binding. Biochemistry 30, 5076–5080.[CrossRef]
    [Google Scholar]
  37. Vega, Y., Rauch, M., Banfield, M. J., Ermolaeva, S., Scortti, M., Goebel, W. & Vazquez-Boland, J. A. ( 2004; ). New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure–function of the virulence regulator PrfA. Mol Microbiol 52, 1553–1565.[CrossRef]
    [Google Scholar]
  38. Velge, P., Herler, M., Johansson, J., Roche, S. M., Témoin, S., Fedorov, A. A., Gracieux, P., Almo, S. C., Goebel, W. & Cossart, P. ( 2007; ). A naturally occurring mutation K220T in the pleiotropic activator PrfA of Listeria monocytogenes results in a loss of virulence due to decreasing DNA-binding affinity. Microbiology 153, 995–1005.[CrossRef]
    [Google Scholar]
  39. Wong, K. K. & Freitag, N. E. ( 2004; ). A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J Bacteriol 186, 6265–6276.[CrossRef]
    [Google Scholar]
  40. Youn, H., Kerby, R. L., Conrad, M. & Roberts, G. P. ( 2006; ). Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. J Biol Chem 281, 1119–1127.[CrossRef]
    [Google Scholar]
  41. Youn, H., Kerby, R. L., Koh, J. & Roberts, G. P. ( 2007; ). A C-helix residue, Arg-123, has important roles in both the active and inactive forms of the cAMP receptor protein. J Biol Chem 282, 3632–3639.
    [Google Scholar]
  42. Youngman, P. ( 1987; ). Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram-positive bacteria. In Plasmids: a Practical Approach, pp. 79–103. Edited by K. Hardy. Oxford: IRL Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021063-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021063-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error