1887

Abstract

A large-scale analysis of proteins involved in host-cell signalling pathways was performed using chlamydia-infected murine cells in order to identify host proteins that are differentially activated or localized following infection. Two proteins whose distribution was altered in -infected cells relative to mock-infected cells were the actin-binding protein adducin and the regulatory kinase Raf-1. Immunoblot analysis with antibodies to both phosphorylated and non-phosphorylated forms of these proteins demonstrated that the abundance of each protein was markedly reduced in the cytosolic fraction of - and -infected cells, but the total cellular protein abundance remained unaffected by infection. Fluorescence microscopy of chlamydia-infected cells using anti--adducin antibodies demonstrated labelling at or near the chlamydial inclusion membrane. Treatment of infected cells with nocodazole or cytochalasin D did not affect -adducin that was localized to the margins of the inclusion. The demonstration of -adducin and Raf-1 redistribution within cells infected by different chlamydiae provides novel opportunities for analysis of host–pathogen interactions in this system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020941-0
2008-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3848.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020941-0&mimeType=html&fmt=ahah

References

  1. Beatty, W. L. ( 2006; ). Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 119, 350–359.[CrossRef]
    [Google Scholar]
  2. Carabeo, R. A., Mead, D. J. & Hackstadt, T. ( 2003; ). Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci U S A 100, 6771–6776.[CrossRef]
    [Google Scholar]
  3. Geisler, W. M., Suchland, R. J., Rockey, D. D. & Stamm, W. E. ( 2001; ). Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions. J Infect Dis 184, 879–884.[CrossRef]
    [Google Scholar]
  4. Gilligan, D. M., Lozovatsky, L., Gwynn, B., Brugnara, C., Mohandas, N. & Peters, L. L. ( 1999; ). Targeted disruption of the beta adducin gene (Add2) causes red blood cell spherocytosis in mice. Proc Natl Acad Sci U S A 96, 10717–10722.[CrossRef]
    [Google Scholar]
  5. Gilligan, D. M., Sarid, R. & Weese, J. ( 2002; ). Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain. Blood 99, 2418–2426.[CrossRef]
    [Google Scholar]
  6. Greene, W. & Zhong, G. ( 2003; ). Inhibition of host cell cytokinesis by Chlamydia trachomatis infection. J Infect 47, 45–51.[CrossRef]
    [Google Scholar]
  7. Grieshaber, S. S., Grieshaber, N. A. & Hackstadt, T. ( 2003; ). Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing centre in a p50 dynamitin-independent process. J Cell Sci 116, 3793–3802.[CrossRef]
    [Google Scholar]
  8. Hackstadt, T., Scidmore, M. A. & Rockey, D. D. ( 1995; ). Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92, 4877–4881.[CrossRef]
    [Google Scholar]
  9. Holleran, E. A., Karki, S. & Holzbaur, E. L. ( 1998; ). The role of the dynactin complex in intracellular motility. Int Rev Cytol 182, 69–109.
    [Google Scholar]
  10. Imamdi, R., de Graauw, M. & van de Water, B. ( 2004; ). Protein kinase C mediates cisplatin induced loss of adherens junctions followed by apoptosis of renal proximal tubular epithelial cells. J Pharmacol Exp Ther 311, 892–903.[CrossRef]
    [Google Scholar]
  11. Jewett, T. J., Fischer, E. R., Mead, D. J. & Hackstadt, T. ( 2006; ). Chlamydial TARP is a bacterial nucleator of actin. Proc Natl Acad Sci U S A 103, 15599–15604.[CrossRef]
    [Google Scholar]
  12. Joshi, R., Gilligan, D. M., Otto, E., McLaughlin, T. & Bennett, V. ( 1991; ). Primary structure and domain organization of human alpha and beta adducin. J Cell Biol 115, 665–675.[CrossRef]
    [Google Scholar]
  13. Lad, S. P., Fukuda, E. Y., Li, J., de la Maza, L. M. & Li, E. ( 2005; ). Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection. J Immunol 174, 7186–7193.[CrossRef]
    [Google Scholar]
  14. Larsson, C. ( 2006; ). Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18, 276–284.[CrossRef]
    [Google Scholar]
  15. Matsuoka, Y., Hughes, C. A. & Bennett, V. ( 1996; ). Adducin regulation. Definition of the calmodulin-binding domain and sites of phosphorylation by protein kinases A and C. J Biol Chem 271, 25157–25166.[CrossRef]
    [Google Scholar]
  16. Miyairi, I. & Byrne, G. I. ( 2006; ). Chlamydia and programmed cell death. Curr Opin Microbiol 9, 102–108.[CrossRef]
    [Google Scholar]
  17. Rockey, D. D. & Rosquist, J. L. ( 1994; ). Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect Immun 62, 106–112.
    [Google Scholar]
  18. Rockey, D. D., Viratyosin, W., Bannantine, J. P., Suchland, R. J. & Stamm, W. E. ( 2002; ). Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions. Microbiology 148, 2497–2505.
    [Google Scholar]
  19. Rzomp, K. A., Scholtes, L. D., Briggs, B. J., Whittaker, G. R. & Scidmore, M. A. ( 2003; ). Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun 71, 5855–5870.[CrossRef]
    [Google Scholar]
  20. Scidmore, M. A. & Hackstadt, T. ( 2001; ). Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol Microbiol 39, 1638–1650.[CrossRef]
    [Google Scholar]
  21. Scidmore, M. A., Fischer, E. R. & Hackstadt, T. ( 1996a; ). Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134, 363–374.[CrossRef]
    [Google Scholar]
  22. Scidmore, M. A., Rockey, D. D., Fischer, E. R., Heinzen, R. A. & Hackstadt, T. ( 1996b; ). Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect Immun 64, 5366–5372.
    [Google Scholar]
  23. Scidmore, M. A., Fischer, E. R. & Hackstadt, T. ( 2003; ). Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun 71, 973–984.[CrossRef]
    [Google Scholar]
  24. Su, H., McClarty, G., Dong, F., Hatch, G. M., Pan, Z. K. & Zhong, G. ( 2004; ). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279, 9409–9416.[CrossRef]
    [Google Scholar]
  25. Suchland, R. J., Rockey, D. D., Bannantine, J. P. & Stamm, W. E. ( 2000; ). Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68, 360–367.[CrossRef]
    [Google Scholar]
  26. Tamaru, S., Fukuta, T., Kaibuchi, K., Matsuoka, Y., Shiku, H. & Nishikawa, M. ( 2005; ). Rho-kinase induces association of adducin with the cytoskeleton in platelet activation. Biochem Biophys Res Commun 332, 347–351.[CrossRef]
    [Google Scholar]
  27. Valdivia, R. H. ( 2008; ). Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11, 53–59.[CrossRef]
    [Google Scholar]
  28. Xia, M., Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D. & Stamm, W. E. ( 2005; ). Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response. J Infect Dis 192, 1229–1236.[CrossRef]
    [Google Scholar]
  29. Yuan, Y., Lyng, K., Zhang, Y. X., Rockey, D. D. & Morrison, R. P. ( 1992; ). Monoclonal antibodies define genus-specific, species-specific, and cross-reactive epitopes of the chlamydial 60-kilodalton heat shock protein (hsp60): specific immunodetection and purification of chlamydial hsp60. Infect Immun 60, 2288–2296.
    [Google Scholar]
  30. Zhong, G., Fan, P., Ji, H., Dong, F. & Huang, Y. ( 2001; ). Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193, 935–942.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020941-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020941-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3848 - 3855

Comparison of the abundance of phosphorylated proteins in infected vs mock-infected samples or lysates [ PDF] (21 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error