1887

Abstract

Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high-light stress require activation by the orphan response regulator NblR, a member of the OmpR/PhoB family. Although NblR contains a putative phosphorylatable residue (Asp57), it lacks other conserved residues required to chelate the Mg necessary for aspartic acid phosphorylation or to transduce the phosphorylation signal. In close agreement with these features, NblR was not phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate and mutation of Asp57 to Ala had no impact on previously characterized NblR functions in . On the other hand, and assays show that the default state of NblR is monomeric, suggesting that, despite input differences, NblR activation could involve the same general mechanism of activation by dimerization present in known members of the OmpR/PhoB family. Structural and functional data indicate that the receiver domain of NblR shares similarities with other phosphorylation-independent response regulators such as FrzS and HP1043. To acknowledge the peculiarities of these atypical ‘two-component’ regulators with phosphorylation-independent signal transduction mechanisms, we propose the term PIARR, standing for phosphorylation-independent activation of response regulator.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020677-0
2008-10-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3002.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020677-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. J., Smith J. A., Struhl K.. (editors) 1999; Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bachhawat P., Swapna G. V., Montelione G. T., Stock A. M.. 2005; Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure13:1353–1363
    [Google Scholar]
  3. Bartel P., Chien C. T., Sternglanz R., Fields S.. 1993; Elimination of false positives that arise in using the two-hybrid system. Biotechniques14:920–924
    [Google Scholar]
  4. Brunger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M.. other authors 1998; Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr54:905–921
    [Google Scholar]
  5. Burillo S.. 2006; Identificación y caracterización de componentes celulares implicados en transducción de señales en Synechococcus sp. PCC 7942. PhD thesis Universidad de Alicante; Spain:
    [Google Scholar]
  6. Burillo S., Luque I., Fuentes I., Contreras A.. 2004; Interactions between the nitrogen signal transduction protein PII and N-acetylglutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol186:3346–3354
    [Google Scholar]
  7. Casino P., Fernandez-Alvarez A., Alfonso C., Rivas G., Marina A.. 2007; Identification of a novel two component system in Thermotoga maritima. Complex stoichiometry and crystallization. Biochim Biophys Acta 1774;603–609
    [Google Scholar]
  8. Collaborative Computational Project, Number 4 1994; The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr50:760–763
    [Google Scholar]
  9. Collier J. L., Grossman A. R.. 1992; Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol174:4718–4726
    [Google Scholar]
  10. Collier J. L., Grossman A. R.. 1994; A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J13:1039–1047
    [Google Scholar]
  11. Dyer C. M., Dahlquist F. W.. 2006; Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. J Bacteriol188:7354–7363
    [Google Scholar]
  12. Espinosa J., Fuentes I., Burillo S., Rodriguez-Mateos F., Contreras A.. 2006; SipA, a novel type of protein from Synechococcus sp. PCC 7942, binds to the kinase domain of NblS. FEMS Microbiol Lett254:41–47
    [Google Scholar]
  13. Espinosa J., Forchhammer K., Contreras A.. 2007; Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology153:711–718
    [Google Scholar]
  14. Fields S., Song O.. 1989; A novel genetic system to detect protein-protein interactions. Nature340:245–246
    [Google Scholar]
  15. Fraser J. S., Merlie J. P. Jr, Echols N., Weisfield S. R., Mignot T., Wemmer D. E., Zusman D. R., Alber T.. 2007; An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS. Mol Microbiol65:319–332
    [Google Scholar]
  16. Gao R., Mack T. R., Stock A. M.. 2007; Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci32:225–234
    [Google Scholar]
  17. Golden S. S., Sherman L. A.. 1984; Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol158:36–42
    [Google Scholar]
  18. Grossman A. R., Schaefer M. R., Chiang G. G., Collier J. L.. 1993; The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev57:725–749
    [Google Scholar]
  19. Grossman A. R., Bhaya D., He Q.. 2001; Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem276:11449–11452
    [Google Scholar]
  20. Hanahan D.. 1985; Techniques for transformation of Escherichia coli. In DNA Cloning pp109–135 Edited by Glover D. M. Oxford, UK: IRL Press;
    [Google Scholar]
  21. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J.. 1993; The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell75:805–816
    [Google Scholar]
  22. Hubbard J. A., MacLachlan L. K., King G. W., Jones J. J., Fosberry A. P.. 2003; Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol Microbiol49:1191–1200
    [Google Scholar]
  23. James P., Halladay J., Craig E. A.. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics144:1425–1436
    [Google Scholar]
  24. Jeon Y., Lee Y. S., Han J. S., Kim J. B., Hwang D. S.. 2001; Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem276:40873–40879
    [Google Scholar]
  25. Kappell A. D., Bhaya D., van Waasbergen L. G.. 2006; Negative control of the high light-inducible hliA gene and implications for the activities of the NblS sensor kinase in the cyanobacterium Synechococcus elongatus strain PCC 7942. Arch Microbiol186:403–413
    [Google Scholar]
  26. Karimova G., Pidoux J., Ullmann A., Ladant D.. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756
    [Google Scholar]
  27. Karimova G., Dautin N., Ladant D.. 2005; Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol187:2233–2243
    [Google Scholar]
  28. Kato H., Chibazakura T., Yoshikawa H.. 2008; NblR is a novel one-component response regulator in the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem72:1072–1079
    [Google Scholar]
  29. Kopp J., Schwede T.. 2004; The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res32:D230–D234
    [Google Scholar]
  30. Lee G. F., Lebert M. R., Lilly A. A., Hazelbauer G. L.. 1995; Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo. Proc Natl Acad Sci U S A92:3391–3395
    [Google Scholar]
  31. Lee S. Y., Cho H. S., Pelton J. G., Yan D., Berry E. A., Wemmer D. E.. 2001; Crystal structure of activated CheY. Comparison with other activated receiver domains. J Biol Chem276:16425–16431
    [Google Scholar]
  32. Letunic I., Copley R. R., Pils B., Pinkert S., Schultz J., Bork P.. 2006; SMART 5: domains in the context of genomes and networks. Nucleic Acids Res34:D257–D260
    [Google Scholar]
  33. Lewis R. J., Brannigan J. A., Muchova K., Barak I., Wilkinson A. J.. 1999; Phosphorylated aspartate in the structure of a response regulator protein. J Mol Biol294:9–15
    [Google Scholar]
  34. Luque I., Zabulon G., Contreras A., Houmard J.. 2001; Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol41:937–947
    [Google Scholar]
  35. Martinez-Argudo I., Martin-Nieto J., Salinas P., Maldonado R., Drummond M., Contreras A.. 2001; Two-hybrid analysis of domain interactions involving NtrB and NtrC two-component regulators. Mol Microbiol40:169–178
    [Google Scholar]
  36. Martinez-Argudo I., Salinas P., Maldonado R., Contreras A.. 2002; Domain interactions on the ntr signal transduction pathway: two-hybrid analysis of mutant and truncated derivatives of histidine kinase NtrB. J Bacteriol184:200–206
    [Google Scholar]
  37. McCleary W. R., Stock J. B.. 1994; Acetyl phosphate and the activation of two-component response regulators. J Biol Chem269:31567–31572
    [Google Scholar]
  38. Millson S. H., Truman A. W., Piper P. W.. 2003; Vectors for N- or C-terminal positioning of the yeast Gal4p DNA binding or activator domains. Biotechniques35:60–64
    [Google Scholar]
  39. Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M.. 1992; Stereochemical quality of protein structure coordinates. Proteins12:345–364
    [Google Scholar]
  40. Myers J., Graham J. R., Wang R. T.. 1980; Light harvesting in Anacystis nidulans studied in pigment mutants. Plant Physiol66:1144–1149
    [Google Scholar]
  41. Ohta N., Newton A.. 2003; The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J Bacteriol185:4424–4431
    [Google Scholar]
  42. Pieper U., Eswar N., Braberg H., Madhusudhan M. S., Davis F. P., Stuart A. C., Mirkovic N., Rossi A., Marti-Renom M. A.. other authors 2004; MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res32:D217–D222
    [Google Scholar]
  43. Roder K. H., Wolf S. S., Schweizer M.. 1996; Refinement of vectors for use in the yeast two-hybrid system. Anal Biochem241:260–262
    [Google Scholar]
  44. Rubio L. M., Herrero A., Flores E.. 1996; A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol Biol30:845–850
    [Google Scholar]
  45. Salinas P., Ruiz D., Cantos R., Lopez-Redondo M. L., Marina A., Contreras A.. 2007; The regulatory factor SipA provides a link between NblS and NblR signal transduction pathways in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol66:1607–1619
    [Google Scholar]
  46. Schar J., Sickmann A., Beier D.. 2005; Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J Bacteriol187:3100–3109
    [Google Scholar]
  47. Schwarz R., Grossman A. R.. 1998; A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci U S A95:11008–11013
    [Google Scholar]
  48. Sendersky E., Lahmi R., Shaltiel J., Perelman A., Schwarz R.. 2005; NblC, a novel component required for pigment degradation during starvation in Synechococcus PCC 7942. Mol Microbiol58:659–668
    [Google Scholar]
  49. Stock A. M., Robinson V. L., Goudreau P. N.. 2000; Two-component signal transduction. Annu Rev Biochem69:183–215
    [Google Scholar]
  50. Studier F. W.. 2005; Protein production by auto-induction in high density shaking cultures. Protein Expr Purif41:207–234
    [Google Scholar]
  51. Toro-Roman A., Mack T. R., Stock A. M.. 2005; Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the α4- β5- α5 face. J Mol Biol349:11–26
    [Google Scholar]
  52. van Waasbergen L. G., Dolganov N., Grossman A. R.. 2002; nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J Bacteriol184:2481–2490
    [Google Scholar]
  53. Williams S. B., Vakonakis I., Golden S. S., LiWang A. C.. 2002; Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci U S A99:15357–15362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020677-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020677-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error