1887

Abstract

The terminal organelle is a differentiated structure that plays a key role in mycoplasma cytadherence and locomotion. For this reason, the analysis of mutants displaying anomalous terminal organelles could improve our knowledge regarding the structural elements required for proper locomotion. In this study, we isolated several mutants having transposon insertions within the or genes, which encode the orthologues of HMW2 and HMW3 cytoskeletal proteins, respectively. As expected, mg218 and mg317 mutants exhibit a reduced gliding motility, although their ability to attach to solid surfaces was not completely abolished. Interestingly, most of the mg218 mutants expressed N-terminal MG218 derivatives and showed the presence of short terminal organelles retaining many of the functions displayed by this structure in the wild-type strain, suggesting that the N-terminal region of this protein is an essential element in the architecture of the terminal organelle. Separately, the analysis of mg317 mutants indicates that MG317 protein is involved in the formation of the terminal button and contributes to anchoring the electron-dense core to the cell membrane. The results presented here clearly show that MG218 and MG317 proteins are implicated in the maintenance of gliding motility and cytadherence in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020636-0
2008-10-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3188.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020636-0&mimeType=html&fmt=ahah

References

  1. Akhmedov, A. T., Gross, B. & Jessberger, R. ( 1999; ). Mammalian SMC3 C-terminal and coiled-coil protein domains specifically bind palindromic DNA, do not block DNA ends, and prevent DNA bending. J Biol Chem 274, 38216–38224.[CrossRef]
    [Google Scholar]
  2. Balish, M. F., Ross, S. M., Fisseha, M. & Krause, D. C. ( 2003a; ). Deletion analysis identifies key functional domains of the cytadherence-associated protein HMW2 of Mycoplasma pneumoniae. Mol Microbiol 50, 1507–1516.[CrossRef]
    [Google Scholar]
  3. Balish, M. F., Santurri, R. T., Ricci, A. M., Lee, K. K. & Krause, D. C. ( 2003b; ). Localization of Mycoplasma pneumoniae cytadherence-associated protein HMW2 by fusion with green fluorescent protein: implications for attachment organelle structure. Mol Microbiol 47, 49–60.
    [Google Scholar]
  4. Baseman, J. B. & Tully, J. G. ( 1997; ). Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3, 21–32.[CrossRef]
    [Google Scholar]
  5. Baseman, J. B., Dallo, S. F., Tully, J. G. & Rose, D. L. ( 1988; ). Isolation and characterization of Mycoplasma genitalium strains from the human respiratory tract. J Clin Microbiol 26, 2266–2269.
    [Google Scholar]
  6. Burgos, R., Pich, O. Q., Ferrer-Navarro, M., Baseman, J. B., Querol, E. & Pinol, J. ( 2006; ). Mycoplasma genitalium P140 and P110 cytadhesins are reciprocally stabilized and required for cell adhesion and terminal-organelle development. J Bacteriol 188, 8627–8637.[CrossRef]
    [Google Scholar]
  7. Burgos, R., Pich, O. Q., Querol, E. & Pinol, J. ( 2007; ). Functional analysis of the Mycoplasma genitalium MG312 protein reveals a specific requirement of the MG312 N-terminal domain for gliding motility. J Bacteriol 189, 7014–7023.[CrossRef]
    [Google Scholar]
  8. Dhandayuthapani, S., Rasmussen, W. G. & Baseman, J. B. ( 1999; ). Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci U S A 96, 5227–5232.[CrossRef]
    [Google Scholar]
  9. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G. & other authors ( 1995; ). The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.[CrossRef]
    [Google Scholar]
  10. Gobel, U., Speth, V. & Bredt, W. ( 1981; ). Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J Cell Biol 91, 537–543.[CrossRef]
    [Google Scholar]
  11. Hasselbring, B. M. & Krause, D. C. ( 2007; ). Cytoskeletal protein P41 is required to anchor the terminal organelle of the wall-less prokaryote Mycoplasma pneumoniae. Mol Microbiol 63, 44–53.[CrossRef]
    [Google Scholar]
  12. Hasselbring, B. M., Jordan, J. L. & Krause, D. C. ( 2005; ). Mutant analysis reveals a specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility. J Bacteriol 187, 6281–6289.[CrossRef]
    [Google Scholar]
  13. Hasselbring, B. M., Page, C. A., Sheppard, E. S. & Krause, D. C. ( 2006; ). Transposon mutagenesis identifies genes associated with Mycoplasma pneumoniae gliding motility. J Bacteriol 188, 6335–6345.[CrossRef]
    [Google Scholar]
  14. Hedreyda, C. T. & Krause, D. C. ( 1995; ). Identification of a possible cytadherence regulatory locus in Mycoplasma pneumoniae. Infect Immun 63, 3479–3483.
    [Google Scholar]
  15. Henderson, G. P. & Jensen, G. J. ( 2006; ). Three-dimensional structure of Mycoplasma pneumoniae's attachment organelle and a model for its role in gliding motility. Mol Microbiol 60, 376–385.[CrossRef]
    [Google Scholar]
  16. Krause, D. C. ( 1996; ). Mycoplasma pneumoniae cytadherence: unravelling the tie that binds. Mol Microbiol 20, 247–253.[CrossRef]
    [Google Scholar]
  17. Krause, D. C. & Balish, M. F. ( 2004; ). Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae. Mol Microbiol 51, 917–924.[CrossRef]
    [Google Scholar]
  18. Krause, D. C., Proft, T., Hedreyda, C. T., Hilbert, H., Plagens, H. & Herrmann, R. ( 1997; ). Transposon mutagenesis reinforces the correlation between Mycoplasma pneumoniae cytoskeletal protein HMW2 and cytadherence. J Bacteriol 179, 2668–2677.
    [Google Scholar]
  19. Lluch-Senar, M., Vallmitjana, M., Querol, E. & Piñol, J. ( 2007; ). A new promoterless reporter vector reveals antisense transcription in Mycoplasma genitalium. Microbiology 153, 2743–2752.[CrossRef]
    [Google Scholar]
  20. Marchler-Bauer, A. & Bryant, S. H. ( 2004; ). CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32, W327–W331.[CrossRef]
    [Google Scholar]
  21. Meng, K. E. & Pfister, R. M. ( 1980; ). Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol 144, 390–399.
    [Google Scholar]
  22. Mernaugh, G. R., Dallo, S. F., Holt, S. C. & Baseman, J. B. ( 1993; ). Properties of adhering and nonadhering populations of Mycoplasma genitalium. Clin Infect Dis 17 (Suppl. 1), S69–S78.[CrossRef]
    [Google Scholar]
  23. Mudahi-Orenstein, S., Levisohn, S., Geary, S. J. & Yogev, D. ( 2003; ). Cytadherence deficient mutants of Mycoplasma gallisepticum generated by transposon mutagenesis. Infect Immun 71, 3812–3820.[CrossRef]
    [Google Scholar]
  24. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. ( 1999; ). Probability based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.[CrossRef]
    [Google Scholar]
  25. Pich, O. Q., Burgos, R., Ferrer-Navarro, M., Querol, E. & Pinol, J. ( 2006a; ). Mycoplasma genitalium mg200 and mg386 genes are involved in gliding motility but not in cytadherence. Mol Microbiol 60, 1509–1519.[CrossRef]
    [Google Scholar]
  26. Pich, O. Q., Burgos, R., Planell, R., Querol, E. & Pinol, J. ( 2006b; ). Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement. Microbiology 152, 519–527.[CrossRef]
    [Google Scholar]
  27. Radestock, U. & Bredt, W. ( 1977; ). Motility of Mycoplasma pneumoniae. J Bacteriol 129, 1495–1501.
    [Google Scholar]
  28. Reddy, S. P., Rasmussen, W. G. & Baseman, J. B. ( 1996; ). Isolation and characterization of transposon Tn4001-generated, cytadherence-deficient transformants of Mycoplasma pneumoniae and Mycoplasma genitalium. FEMS Immunol Med Microbiol 15, 199–211.[CrossRef]
    [Google Scholar]
  29. Roberts, R. J. ( 2004; ). Identifying protein function – a call for community action. PLoS Biol 2, E42 [CrossRef]
    [Google Scholar]
  30. Seto, S., Kenri, T., Tomiyama, T. & Miyata, M. ( 2005; ). Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol 187, 1875–1877.[CrossRef]
    [Google Scholar]
  31. Stevens, M. K. & Krause, D. C. ( 1991; ). Localization of the Mycoplasma pneumoniae cytadherence-accessory proteins HMW1 and HMW4 in the cytoskeleton-like Triton shell. J Bacteriol 173, 1041–1050.
    [Google Scholar]
  32. Stevens, M. K. & Krause, D. C. ( 1992; ). Mycoplasma pneumoniae cytadherence phase-variable protein HMW3 is a component of the attachment organelle. J Bacteriol 174, 4265–4274.
    [Google Scholar]
  33. Svenstrup, H. F., Jensen, J. S., Gevaert, K., Birkelund, S. & Christiansen, G. ( 2006; ). Identification and characterization of immunogenic proteins of Mycoplasma genitalium. Clin Vaccine Immunol 13, 913–922.[CrossRef]
    [Google Scholar]
  34. Taylor-Robinson, D. & Horner, P. J. ( 2001; ). The role of Mycoplasma genitalium in non-gonococcal urethritis. Sex Transm Infect 77, 229–231.[CrossRef]
    [Google Scholar]
  35. Tully, J. G., Rose, D. L., Whitcomb, R. F. & Wenzel, R. P. ( 1979; ). Enhanced isolation of Mycoplasma pneumoniae from throat washings with a newly-modified culture medium. J Infect Dis 139, 478–482.[CrossRef]
    [Google Scholar]
  36. Tully, J. G., Taylor-Robinson, D., Cole, R. M. & Rose, D. L. ( 1981; ). A newly discovered mycoplasma in the human urogenital tract. Lancet 1, 1288–1291.
    [Google Scholar]
  37. Willby, M. J. & Krause, D. C. ( 2002; ). Characterization of a Mycoplasma pneumoniae hmw3 mutant: implications for attachment organelle assembly. J Bacteriol 184, 3061–3068.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020636-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020636-0
Loading

Data & Media loading...

Supplements

Transmission electron microscopy image of the wild-type strain highlighting the presence of discrete rounded particles at the distal end of the terminal organelle [ PDF] (269 kb) Possible MG218 C-terminal derivatives using internal ATG codons from the mg_218 ORF as alternative translational start codons [ PDF] (10 kb)

PDF

Transmission electron microscopy image of the wild-type strain highlighting the presence of discrete rounded particles at the distal end of the terminal organelle [ PDF] (269 kb) Possible MG218 C-terminal derivatives using internal ATG codons from the mg_218 ORF as alternative translational start codons [ PDF] (10 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error