1887

Abstract

Northern blot analysis and a GFP-based reporter assay showed that , which encodes glucose-6-phosphate dehydrogenase, was highly induced when KT2440 was cultured in minimal medium containing glucose or gluconate. However, expression was not detected in the presence of pyruvate or succinate. The use of a knockout mutant of HexR, a putative transcription regulator, resulted in constitutively high expression of , regardless of the carbon source. An electrophoretic mobility shift assay showed that HexR protein binds to the promoter region and that HexR binding is inhibited by 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite the presence of gluconate, the mutant (non-KDPG producer) was not able to induce the gene. The mutant (KDPG overproducer) featured a constitutively high level of expression. Interestingly, was also highly expressed in the presence of oxidative stress-inducing reagents. The level of induction in wild-type cells undergoing oxidative stress did not differ significantly from that observed with the mutant under normal conditions. Interestingly, the mutant was more tolerant of oxidative stress than the wild-type. Expression of was induced by oxidative stress in the mutant. Thus, KDPG, a real inducer of gene expression, was not necessary for oxidative-stress induction. binding of HexR to its cognate promoter region was diminished by menadione and cumene hydroperoxide. The data suggested that HexR might be a dual-sensing regulator of induction that is able to respond to both KDPG and oxidative stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020362-0
2008-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3905.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020362-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1999; ). Current Protocols in Molecular Biology. New York: Wiley & Sons.
  2. Ceccarelli, E. A., Arakaki, A. K., Cortez, N. & Carrillo, N. ( 2004; ). Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin–NADP(H) reductases. Biochim Biophys Acta 1698, 155–165.[CrossRef]
    [Google Scholar]
  3. Cuskey, S. M., Wolff, J. A., Phibbs, P. V. & Olsen, R. H. ( 1985; ). Cloning of genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida. J Bacteriol 162, 865–871.
    [Google Scholar]
  4. del Castillo, T. & Ramos, J. L. ( 2007a; ). Simultaneous catabolic repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189, 6602–6610.[CrossRef]
    [Google Scholar]
  5. del Castillo, T., Ramos, J. L., Rodríguez-Herva, J. J., Fuhrer, T., Sauer, U. & Duque, E. ( 2007b; ). Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189, 5142–5152.[CrossRef]
    [Google Scholar]
  6. del Castillo, T., Duque, E. & Ramos, J. L. ( 2008; ). A set of activators and repressors control peripheral glucose pathway in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190, 2331–2339.[CrossRef]
    [Google Scholar]
  7. Demple, B. ( 1996; ). Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon – a review. Gene 179, 53–57.[CrossRef]
    [Google Scholar]
  8. Duque, E., Molina-Henares, A. J., de la Torre, J., Molina-Henares, M. A., del Castillo, T., Lam, J. & Ramos, J. L. ( 2007; ). Towards a genome-wide mutant library of Pseudomonas putida strains KT2440. In Pseudomonas, vol. V, chapter 8, pp. 227–251. Edited by J. L. Ramos & A. Filloux. Dordrecht, The Netherlands: Springer.
  9. Fredrickson, J. K., Bezdicek, D. F., Brockman, F. J. & Li, S. W. ( 1988; ). Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number–DNA hybridization procedure and antibiotic resistance. Appl Environ Microbiol 54, 446–453.
    [Google Scholar]
  10. Gant, T. W., Rao, D. N., Mason, R. P. & Cohen, G. M. ( 1988; ). Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinine cytotoxicity to isolated hepatocytes. Chem Biol Interact 65, 157–173.[CrossRef]
    [Google Scholar]
  11. Girò, M., Carrillo, N. & Krapp, A. R. ( 2006; ). Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during soxRS response of Escherichia coli. Microbiology 152, 1119–1128.[CrossRef]
    [Google Scholar]
  12. Greenberg, J. T., Monach, P., Chou, J. H., Josepphy, P. D. & Demple, B. ( 1990; ). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A 87, 6181–6185.[CrossRef]
    [Google Scholar]
  13. Hager, P. W., Calfee, M. W. & Phibbs, P. V. ( 2000; ). The Pseudomonas aeruginosa devB/SOL homolog, pgl, is a member of the hex regulon and encodes 6-phosphogluconolactonase. J Bacteriol 182, 3934–3941.[CrossRef]
    [Google Scholar]
  14. Halliwell, B. & Gutteridge, J. M. C. ( 1999; ). Antioxidant defenses. In Free Radicals in Biology and Medicine, 3rd edn, pp. 105–159. Oxford, UK: Oxford Science Publications.
  15. Hidalgo, E., Ding, B. & Demple, B. ( 1997; ). Redox signal transduction: mutations shifting [2Fe–2S] centers of the SoxR sensor-regulator to the oxidized form. Cell 88, 121–129.[CrossRef]
    [Google Scholar]
  16. Kalogeraki, V. S. & Winans, S. C. ( 1997; ). Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to genes of diverse bacteria. Gene 188, 69–75.[CrossRef]
    [Google Scholar]
  17. Lee, Y., Ahn, E., Park, S., Madsen, E. L., Jeon, C. O. & Park, W. ( 2006a; ). Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J Microbiol Biotechnol 16, 386–390.
    [Google Scholar]
  18. Lee, Y., Peña-Llopis, S., Kang, Y. S., Shin, H.-D., Demple, B., Madsen, E. L., Jeon, C. O. & Park, W. ( 2006b; ). Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem Biophys Res Commun 339, 1246–1254.[CrossRef]
    [Google Scholar]
  19. Li, Z. & Demple, B. ( 1994; ). SoxS, an activator of superoxide stress gene in Escherichia coli. J Biol Chem 269, 18371–18377.
    [Google Scholar]
  20. Lundberg, B., Wolf, R. E., Dinauer, M., Xu, Y. & Fang, F. ( 1999; ). Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 67, 5371–5375.
    [Google Scholar]
  21. Ma, J. F., Hager, P. W., Howell, M. L., Phibbs, P. V. & Hassett, D. J. ( 1998; ). Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat). J Bacteriol 180, 1741–1749.
    [Google Scholar]
  22. Park, W., Jeon, C. O., Hohnstock-Ashe, A. M., Wnas, S. C., Zylstra, G. J. & Madsen, E. L. ( 2003; ). Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl Environ Microbiol 69, 3263–3271.[CrossRef]
    [Google Scholar]
  23. Park, W., Peña-Llopis, S., Lee, Y. & Demple, B. ( 2006; ). Regulation of superoxide stress in Pseudomonas putida KT2440 is different from SoxR paradigm in Escherichia coli. Biochem Biophys Res Commun 341, 51–56.[CrossRef]
    [Google Scholar]
  24. Parvatiyar, K., Alsabbagh, E. M., Ochsner, U. A., Stegemeyer, M. A., Smulian, A. G., Hwang, S. H., Jackson, C. R., Mcdermott, T. R. & Hassett, D. J. ( 2005; ). Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite. J Bacteriol 187, 4853–4864.[CrossRef]
    [Google Scholar]
  25. Petruschka, L., Adolf, K., Burchhardt, G., Dernedde, J., Jürgensen, J. & Herrmann, H. ( 2002; ). Analysis of the zwf-pgl-eda-operon in Pseudomonas putida strains H and KT2440. FEMS Microbiol Lett 215, 89–95.[CrossRef]
    [Google Scholar]
  26. Pomposiello, P. J. & Demple, B. ( 2001; ). Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19, 109–114.[CrossRef]
    [Google Scholar]
  27. Proctor, W. D., Arora, S., Hager, P. & Phibbs, P. V., Jr ( 1997; ). Integration host factor and the putative repressor protein hexR bind the hexC locus of Pseudomonas aeruginosa. Abstracts of the 97th General Meeting of the American Society for Microbiology K-95, p. 357. Washington DC: American Society for Microbiology.
  28. Simon, R., Priefer, U. & Pufler, A. ( 1983; ). A broad host range mobilization system in Gram-negative bacteria. Biotechnology (N Y) 1, 784–791.[CrossRef]
    [Google Scholar]
  29. Singh, R., Beriault, R., Middaugh, J., Hamel, R., Chenier, D., Appanna, V. D. & Kalyuzhnyi, S. ( 2005; ). Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles 9, 367–373.[CrossRef]
    [Google Scholar]
  30. Sung, J. Y. & Lee, Y. N. ( 2007; ). Isoforms of glucose 6-phosphate dehydrogenase in Deinococcus radiophilus. J Microbiol 45, 318–325.
    [Google Scholar]
  31. Temple, L., Cuskey, S. M., Perkins, R. E., Bass, R. C., Morales, N. M., Christie, G. E., Olsen, R. H. & Phibbs, P. V. ( 1990; ). Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO. J Bacteriol 172, 6396–6402.
    [Google Scholar]
  32. Temple, L., Sage, A., Christie, G. E. & Phibbs, P. V. ( 1994; ). Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1. J Bacteriol 176, 4700–4709.
    [Google Scholar]
  33. Temple, L., Sage, A., Schweizer, H. P. & Phibbs, P. V. ( 1998; ). Carbohydrate catabolism in Pseudomonas aeruginosa. In Biotechnology Handbooks, vol. 10, chapter 2, pp. 35–72. Edited by T. C. Montie. New York: Plenum.
  34. Tsaneva, I. R. & Weiss, B. ( 1990; ). soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 172, 4197–4205.
    [Google Scholar]
  35. Wu, J. & Weiss, B. ( 1992; ). Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol 174, 3915–3920.
    [Google Scholar]
  36. Yin, S., Fuanthong, M., Laratta, W. P. & Shapleigh, J. P. ( 2003; ). Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl Environ Microbiol 69, 3938–3944.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020362-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020362-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error