-Cysteine is required for induced antibiotic resistance in actively swarming serovar Typhimurium Free

Abstract

Swarm-cell differentiation in serovar Typhimurium () results in a biosynthetic mode of growth, despite growing on a rich medium, and cells that have elevated antibiotic resistance. These phenotypes are not a prerequisite for swarm motility. By blocking the switch to anabolic growth using amino acid auxotrophs and screening for the presence of elevated antibiotic resistance in the swarm state, we found that cysteine biosynthesis is crucial for complete swarm-cell differentiation. Mutants were made in each biosynthetic operon and all had decreased antibiotic resistance in the swarm state, while swim-cell resistance remained the same as that of wild-type cells. This swarm-state-specific decreased resistance in Δ strains could be restored to wild-type levels by the addition of cysteine to swarm medium. Two regulatory mutants, Δ and Δ, failed to swarm unless cysteine was supplemented to the medium. We show that all CysB-responsive operons involved in cysteine biosynthesis are upregulated in the swarm state, even though swarm cells are cultivated on a medium that represses cysteine biosynthesis in the swim state. While swarm medium has sufficient cysteine for growth of , it does not contain enough for swarm-cell differentiation. We hypothesize that in these cells, the additional cysteine requirement is for use in pathways not directly related to cell growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020347-0
2008-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3410.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020347-0&mimeType=html&fmt=ahah

References

  1. Allison C., Lai H. C., Hughes C. 1992a; Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis . Mol Microbiol 6:1583–1591
    [Google Scholar]
  2. Allison C., Coleman N., Jones P. L., Hughes C. 1992b; Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60:4740–4746
    [Google Scholar]
  3. Anton D. N. 2000; Induction of the cysteine regulon of Salmonella typhimurium in LB medium affects the response of cysB mutants to mecillinam. Curr Microbiol 40:72–77
    [Google Scholar]
  4. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S. 2004; Bacterial persistence as a phenotypic switch. Science 305:1622–1625
    [Google Scholar]
  5. Baptist E. W., Kredich N. M. 1977; Regulation of l-cysteine transport in Salmonella typhimurium . J Bacteriol 131:111–118
    [Google Scholar]
  6. Bjarnason J., Southward C. M., Surette M. G. 2003; Genomic profiling of iron-responsive genes in Salmonella enterica serovar Typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185:4973–4982
    [Google Scholar]
  7. Bjur E., Eriksson-Ygberg S., Fredrik Aslund F., Rhen M. 2006; Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect Immun 74:5140–5151
    [Google Scholar]
  8. Burkart M., Toguchi A., Harshey R. M. 1998; The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli . Proc Natl Acad Sci U S A 95:2568–2573
    [Google Scholar]
  9. Carmel-Harel O., Storz G. 2000; Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461
    [Google Scholar]
  10. Costa C. S., Anton D. N. 2006; High-level resistance to mecillinam produced by inactivation of soluble lytic transglycosylase in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 256:311–317
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  12. Eaves D. J., Ricci V., Piddock L. J. V. 2004; Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother 48:1145–1150
    [Google Scholar]
  13. Fraser G. M., Hughes C. 1999; Swarming motility. Curr Opin Microbiol 2:630–635
    [Google Scholar]
  14. González-Flecha B., Demple B. 1995; Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli . J Biol Chem 270:13681–13687
    [Google Scholar]
  15. Harshey R. M. 2003; Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273
    [Google Scholar]
  16. Harshey R. M., Matsuyama T. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635
    [Google Scholar]
  17. Henrichsen J. 1972; Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503
    [Google Scholar]
  18. Hryniewicz M. M., Kredich N. M. 1991; The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol 173:5876–5886
    [Google Scholar]
  19. Hulanicka D., Klopotowski T., Smith D. A. 1972; The effect of triazole on cysteine biosynthesis in Salmonella typhimurium . J Gen Microbiol 72:291–301
    [Google Scholar]
  20. Kim W., Surette M. G. 2003; Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online 5:189–196
    [Google Scholar]
  21. Kim W., Surette M. G. 2004; Metabolic differentiation in actively migrating swarming Salmonella . Mol Microbiol 54:702–714
    [Google Scholar]
  22. Kim W., Surette M. G. 2006; Coordinated regulation of two independent cell-cell signalling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol 188:431–440
    [Google Scholar]
  23. Kim W., Killam T., Sood V., Surette M. G. 2003; Swarm-cell differentiation in Salmonella enterica serovar Typhimurium results in elevated resistance to multiple antibiotics. J Bacteriol 185:3111–3117
    [Google Scholar]
  24. Kredich N. M. 1971; Regulation of l-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth on varying sulfur sources and O-acetyl-l-serine on gene expression. J Biol Chem 246:3474–3484
    [Google Scholar]
  25. Kredich N. M. 1996; Biosynthesis of cysteine. In Escherichia coli and Salmonella pp 514–527 Edited by Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington: ASM Press;
    [Google Scholar]
  26. Levin B. R., Rozen D. E. 2006; Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–562
    [Google Scholar]
  27. Liaw S.-J., Lai H.-C., Ho S.-W., Luh K.-T., Wang W.-B. 2003; Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis . J Med Microbiol 52:19–28
    [Google Scholar]
  28. Lilic M., Jovanovic M., Jovanovic G., Savic D. J. 2003; Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol Lett 224:239–246
    [Google Scholar]
  29. Maloy S. R. 1990; Phage P22. In Experimental Techniques in Bacterial Genetics pp 11–16 Boston, MA: Jones & Bartlett Publishers;
    [Google Scholar]
  30. Neuwald A. F., Krishnan B. R., Brikun I., Kulakauskas S., Suziedelis K., Tomcsanyi T., Leyh T. S., Berg D. E. 1992; cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol 174:415–425
    [Google Scholar]
  31. Oppezzo O. J., Anton D. N. 1995; Involvement of cysB and cysE genes in the sensitivity of Salmonella typhimurium to mecillinam. J Bacteriol 177:4524–4527
    [Google Scholar]
  32. Ostrowski J., Kredich N. M. 1990; In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide. J Bacteriol 172:779–785
    [Google Scholar]
  33. Peck H. D. 1961; Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol 82:933–939
    [Google Scholar]
  34. Quan J. A., Schneider B. L., Paulsen I. T., Yamada M., Kredich N. M., Saier M. H. Jr 2002; Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium . Microbiology 148:123–131
    [Google Scholar]
  35. Rakonjac J., Milic M., Savic D. J. 1991; cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol Gen Genet 228:307–311
    [Google Scholar]
  36. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. New York, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  37. Shi X., Bennett G. N. 1994; Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli . J Bacteriol 176:7017–7023
    [Google Scholar]
  38. Sirko A., Zatyka M., Sadowy E., Hulanicka D. 1995; Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol 177:4134–4136
    [Google Scholar]
  39. Stec E., Witkowska-Zimny M., Hryniewicz M. M., Neumann P., Wilkinson A. J., Brzozowski A. M., Verma C. S., Zaim J., Wysocki S., Bujacz G. D. 2006; Structural basis of the sulphate starvation response in Escherichia coli: crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator. J Mol Biol 364:309–322
    [Google Scholar]
  40. Sturgill G., Toutain C. M., Komperda J., O'Toole G. A., Rather P. N. 2004; Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of cysE enhances biofilm formation in Escherichia coli . J Bacteriol 186:7610–7617
    [Google Scholar]
  41. Toguchi A., Siano M., Burkart M., Harshey R. M. 2000; Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321
    [Google Scholar]
  42. Van Der Ploeg J. R., Iwanicka-Nowicka R., Kertesz M. A., Leisinger T., Hryniewicz M. M. 1997; Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli . J Bacteriol 179:7671–7678
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020347-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020347-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed