1887

Abstract

The locus was previously suggested to encode an orthologue of the RNA chaperone Hfq in the cyanobacterium sp. strain PCC 6803. Insertional inactivation of this gene resulted in a mutant that was not naturally transformable and exhibited a non-phototactic phenotype compared with the wild-type. The loss of motility was complemented by reintroduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knockout mutant compared with the wild-type cells. Among the most strongly affected genes, and stood out, as they belong to two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein SYCRP1. This suggests a link between cAMP signalling, motility and possibly the involvement of RNA-based regulation. This is believed to be the first report demonstrating a functional role of an Hfq orthologue in cyanobacteria, establishing a new factor in the control of motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020222-0
2008-10-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3134.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020222-0&mimeType=html&fmt=ahah

References

  1. Axmann, I. M., Kensche, P., Vogel, J., Kohl, S., Herzel, H. & Hess, W. R. ( 2005; ). Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 6, R73 [CrossRef]
    [Google Scholar]
  2. Bardy, S. L., Ng, S. Y. & Jarrell, K. F. ( 2003; ). Prokaryotic motility structures. Microbiology 149, 295–304.[CrossRef]
    [Google Scholar]
  3. Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H. & Kompala, D. S. ( 1990; ). Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35, 668–681.[CrossRef]
    [Google Scholar]
  4. Bhaya, D. ( 2004; ). Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53, 745–754.[CrossRef]
    [Google Scholar]
  5. Bhaya, D., Bianco, N. R., Bryant, D. & Grossman, A. ( 2000; ). Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37, 941–951.[CrossRef]
    [Google Scholar]
  6. Bhaya, D., Nakasugi, K., Fazeli, F. & Burriesci, M. S. ( 2006; ). Phototaxis and impaired motility in adenylyl cyclase and cyclase receptor protein mutants of Synechocystis sp. strain PCC 6803. J Bacteriol 188, 7306–7310.[CrossRef]
    [Google Scholar]
  7. Bohn, C., Rigoulay, C. & Bouloc, P. ( 2007; ). No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 7, 10 [CrossRef]
    [Google Scholar]
  8. Botsford, J. L. & Harman, J. G. ( 1992; ). Cyclic AMP in prokaryotes. Microbiol Rev 56, 100–122.
    [Google Scholar]
  9. Christiansen, J. K., Larsen, M. H., Ingmer, H., Søgaard-Andersen, L. & Kallipolitis, B. H. ( 2004; ). The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 186, 3355–3362.[CrossRef]
    [Google Scholar]
  10. Christiansen, J. K., Nielsen, J. S., Ebersbach, T., Valentin-Hansen, P., Søgaard-Andersen, L. & Kallipolitis, B. H. ( 2006; ). Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 12, 1383–1396.[CrossRef]
    [Google Scholar]
  11. Churchill, G. A. ( 2002; ). Fundamentals of experimental design for cDNA microarrays. Nat Genet 32, 490–495.[CrossRef]
    [Google Scholar]
  12. Ding, Y., Davis, B. M. & Waldor, M. K. ( 2004; ). Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53, 345–354.[CrossRef]
    [Google Scholar]
  13. Drepper, T., Raabe, K., Giaourakis, D., Gendrullis, M., Masepohl, B. & Klipp, W. ( 2002; ). The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression. FEMS Microbiol Lett 215, 221–227.[CrossRef]
    [Google Scholar]
  14. Dühring, U., Axmann, I. M., Hess, W. R. & Wilde, A. ( 2006; ). An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A 103, 7054–7058.[CrossRef]
    [Google Scholar]
  15. Eisenhut, M., von Wobeser, E. A., Jonas, L., Schubert, H., Ibelings, B. W., Bauwe, H., Matthijs, H. C. & Hagemann, M. ( 2007; ). Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144, 1946–1959.[CrossRef]
    [Google Scholar]
  16. Ermakova, S. Y., Elanskaya, I. V., Kallies, K. U., Weihe, A., Börner, T. & Shestakov, S. V. ( 1993; ). Cloning and sequencing of mutant psbB genes of the cyanobacterium Synechocystis PCC 6803. Photosynth Res 37, 139–146.[CrossRef]
    [Google Scholar]
  17. Folichon, M., Arluison, V., Pellegrini, O., Huntzinger, E., Regnier, P. & Hajnsdorf, E. ( 2003; ). The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res 31, 7302–7310.[CrossRef]
    [Google Scholar]
  18. Folichon, M., Allemand, F., Régnier, P. & Hajnsdorf, E. ( 2005; ). Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J 272, 454–463.[CrossRef]
    [Google Scholar]
  19. Gee, J. M., Valderas, M. W., Kovach, M. E., Grippe, V. K., Robertson, G. T., Ng, W. L., Richardson, J. M., Winkler, M. E. & Roop, R. M., II ( 2005; ). The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73, 2873–2880.[CrossRef]
    [Google Scholar]
  20. Geissmann, T. A. & Touati, D. ( 2004; ). Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J 23, 396–405.[CrossRef]
    [Google Scholar]
  21. Glaeser, J., Zobawa, M., Lottspeich, F. & Klug, G. ( 2007; ). Protein synthesis patterns reveal a complex regulatory response to singlet oxygen in Rhodobacter. J Proteome Res 6, 2460–2471.[CrossRef]
    [Google Scholar]
  22. Golecki, J. R. ( 1988; ). Electron microscopy of isolated microbial membranes. Methods Microbiol 20, 261–282.
    [Google Scholar]
  23. Gottesman, S. ( 2004; ). The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58, 303–328.[CrossRef]
    [Google Scholar]
  24. Gottesman, S. ( 2005; ). Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21, 399–404.[CrossRef]
    [Google Scholar]
  25. Hajnsdorf, E. & Régnier, P. ( 2000; ). Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci U S A 97, 1501–1505.[CrossRef]
    [Google Scholar]
  26. Hernandez, J. A., Muro-Pastor, A. M., Flores, E., Bes, M. T., Peleato, M. L. & Fillat, M. F. ( 2005; ). Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 355, 325–334.
    [Google Scholar]
  27. Kamei, A., Yuasa, T., Orikawa, K., Geng, X. X. & Ikeuchi, M. ( 2001; ). A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183, 1505–1510.[CrossRef]
    [Google Scholar]
  28. Kaminski, P. A. & Elmerich, C. ( 1998; ). The control of Azorhizobium caulinodans nifA expression by oxygen, ammonia and by the HF-I-like protein, NrfA. Mol Microbiol 28, 603–613.[CrossRef]
    [Google Scholar]
  29. Kaminski, P. A., Desnoues, N. & Elmerich, C. ( 1994; ). The expression of nifA in Azorhizobium caulinodans requires a gene product homologous to Escherichia coli HF-I, an RNA-binding protein involved in the replication of phage Q beta RNA. Proc Natl Acad Sci U S A 91, 4663–4667.[CrossRef]
    [Google Scholar]
  30. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M. & other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109–136.[CrossRef]
    [Google Scholar]
  31. Kawamoto, H., Koide, Y., Morita, T. & Aiba, H. ( 2006; ). Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61, 1013–1022.[CrossRef]
    [Google Scholar]
  32. Lee, T. & Feig, A. L. ( 2008; ). The RNA binding protein Hfq interacts specifically with tRNAs. RNA 14, 514–523.[CrossRef]
    [Google Scholar]
  33. Lucchetti-Miganeh, C., Burrowes, E., Baysse, C. & Ermel, G. ( 2008; ). The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 154, 16–29.[CrossRef]
    [Google Scholar]
  34. Majdalani, N., Vanderpool, C. K. & Gottesman, S. ( 2005; ). Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40, 93–113.[CrossRef]
    [Google Scholar]
  35. Massé, E., Escorcia, F. E. & Gottesman, S. ( 2003; ). Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17, 2374–2383.[CrossRef]
    [Google Scholar]
  36. McBride, M. J. ( 2001; ). Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55, 49–75.[CrossRef]
    [Google Scholar]
  37. Mohanty, B. K., Maples, V. F. & Kushner, S. R. ( 2004; ). The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 54, 905–920.[CrossRef]
    [Google Scholar]
  38. Moll, I., Afonyushkin, T., Vytvytska, O., Kaberdin, V. R. & Bläsi, U. ( 2003; ). Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9, 1308–1314.[CrossRef]
    [Google Scholar]
  39. Møller, T., Franch, T., Højrup, P., Keene, D. R., Bachinger, H. P., Brennan, R. G. & Valentin-Hansen, P. ( 2002; ). Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9, 23–30.[CrossRef]
    [Google Scholar]
  40. Morita, T., Maki, K. & Aiba, H. ( 2005; ). RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19, 2176–2186.[CrossRef]
    [Google Scholar]
  41. Muffler, A., Fischer, D. & Hengge-Aronis, R. ( 1996; ). The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10, 1143–1151.[CrossRef]
    [Google Scholar]
  42. Muffler, A., Traulsen, D. D., Fischer, D., Lange, R. & Hengge-Aronis, R. ( 1997; ). The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the σ S subunit of RNA polymerase in Escherichia coli. J Bacteriol 179, 297–300.
    [Google Scholar]
  43. Nakasugi, K., Svenson, C. J. & Neilan, B. A. ( 2006; ). The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 152, 3623–3631.[CrossRef]
    [Google Scholar]
  44. Nielsen, J. S., Bøggild, A., Andersen, C. B., Nielsen, G., Boysen, A., Brodersen, D. E. & Valentin-Hansen, P. ( 2007; ). An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA 13, 2213–2223.[CrossRef]
    [Google Scholar]
  45. Nudleman, E. & Kaiser, D. ( 2004; ). Pulling together with type IV pili. J Mol Microbiol Biotechnol 7, 52–62.[CrossRef]
    [Google Scholar]
  46. Panichkin, V. B., Arakawa-Kobayashi, S., Kanaseki, T., Suzuki, I., Los, D. A., Shestakov, S. V. & Murata, N. ( 2006; ). Serine/threonine protein kinase SpkA in Synechocystis sp. strain PCC 6803 is a regulator of expression of three putative pilA operons, formation of thick pili, and cell motility. J Bacteriol 188, 7696–7699.[CrossRef]
    [Google Scholar]
  47. Papenfort, K., Pfeiffer, V., Lucchini, S., Sonawane, A., Hinton, J. C. & Vogel, J. ( 2008; ). Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol 68, 890–906.[CrossRef]
    [Google Scholar]
  48. Pfeiffer, V., Sittka, A., Tomer, R., Tedin, K., Brinkmann, V. & Vogel, J. ( 2007; ). A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 66, 1174–1191.[CrossRef]
    [Google Scholar]
  49. Pizarro-Cerdá, J. & Cossart, P. ( 2006; ). Bacterial adhesion and entry into host cells. Cell 124, 715–727.[CrossRef]
    [Google Scholar]
  50. Polayes, D. A., Rice, P. W., Garner, M. M. & Dahlberg, J. E. ( 1988; ). Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. J Bacteriol 170, 3110–3114.
    [Google Scholar]
  51. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  52. Robertson, G. T. & Roop, R. M., Jr ( 1999; ). The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34, 690–700.[CrossRef]
    [Google Scholar]
  53. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  54. Scheibe, M., Bonin, S., Hajnsdorf, E., Betat, H. & Mörl, M. ( 2007; ). Hfq stimulates the activity of the CCA-adding enzyme. BMC Mol Biol 8, 92 [CrossRef]
    [Google Scholar]
  55. Sharma, A. K. & Payne, S. M. ( 2006; ). Induction of expression of hfq by DksA is essential for Shigella flexneri virulence. Mol Microbiol 62, 469–479.[CrossRef]
    [Google Scholar]
  56. Singh, A. K. & Sherman, L. A. ( 2007; ). Reflections on the function of IsiA, a cyanobacterial stress-inducible, Chl-binding protein. Photosynth Res 93, 17–25.[CrossRef]
    [Google Scholar]
  57. Sittka, A., Pfeiffer, V., Tedin, K. & Vogel, J. ( 2007; ). The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 63, 193–217.[CrossRef]
    [Google Scholar]
  58. Sittka, A., Lucchini, S., Papenfort, K., Sharma, C. M., Rolle, K., Binnewies, T. T., Hinton, J. C. D. & Vogel, J. ( 2008; ). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4, e1000163
    [Google Scholar]
  59. Sledjeski, D. D., Whitman, C. & Zhang, A. ( 2001; ). Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183, 1997–2005.[CrossRef]
    [Google Scholar]
  60. Sonnleitner, E., Hagens, S., Rosenau, F., Wilhelm, S., Habel, A., Jäger, K. E. & Bläsi, U. ( 2003; ). Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 35, 217–228.[CrossRef]
    [Google Scholar]
  61. Steglich, C., Futschik, M. E., Lindell, D., Voss, B., Chisholm, S. W. & Hess, W. R. ( 2008; ). The challenge of regulation in a minimal photoautotroph: Non-coding RNAs in Prochlorococcus. PLoS Genet 4, e1000173
    [Google Scholar]
  62. Storz, G., Opdyke, J. A. & Zhang, A. ( 2004; ). Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7, 140–144.[CrossRef]
    [Google Scholar]
  63. Sun, X., Zhulin, I. & Wartell, R. M. ( 2002; ). Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res 30, 3662–3671.[CrossRef]
    [Google Scholar]
  64. Terauchi, K. & Ohmori, M. ( 1999; ). An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 40, 248–251.[CrossRef]
    [Google Scholar]
  65. Terauchi, K. & Ohmori, M. ( 2004; ). Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 52, 303–309.[CrossRef]
    [Google Scholar]
  66. Tsui, H. C., Leung, H. C. & Winkler, M. E. ( 1994; ). Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13, 35–49.[CrossRef]
    [Google Scholar]
  67. Udekwu, K. I., Darfeuille, F., Vogel, J., Reimegård, J., Holmqvist, E. & Wagner, E. G. ( 2005; ). Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev 19, 2355–2366.[CrossRef]
    [Google Scholar]
  68. Urban, J. H. & Vogel, J. ( 2008; ). Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6, e64 [CrossRef]
    [Google Scholar]
  69. Valderas, M. W., Alcantara, R. B., Baumgartner, J. E., Bellaire, B. H., Robertson, G. T., Ng, W. L., Richardson, J. M., Winkler, M. E. & Roop, R. M., II ( 2005; ). Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol 107, 307–312.[CrossRef]
    [Google Scholar]
  70. Valentin-Hansen, P., Eriksen, M. & Udesen, C. ( 2004; ). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51, 1525–1533.[CrossRef]
    [Google Scholar]
  71. Večerek, B., Moll, I. & Bläsi, U. ( 2007; ). Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J 26, 965–975.[CrossRef]
    [Google Scholar]
  72. Wilde, A., Fiedler, B. & Börner, T. ( 2002; ). The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol 44, 981–988.[CrossRef]
    [Google Scholar]
  73. Wilson, J. W., Ott, C. M., Honer zu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G. & other authors ( 2007; ). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104, 16299–16304.[CrossRef]
    [Google Scholar]
  74. Yoshihara, S. & Ikeuchi, M. ( 2004; ). Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 3, 512–518.[CrossRef]
    [Google Scholar]
  75. Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M. & Ikeuchi, M. ( 2001; ). Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42, 63–73.[CrossRef]
    [Google Scholar]
  76. Yoshimura, H., Yanagisawa, S., Kanehisa, M. & Ohmori, M. ( 2002a; ). Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1. Mol Microbiol 43, 843–853.[CrossRef]
    [Google Scholar]
  77. Yoshimura, H., Yoshihara, S., Okamoto, S., Ikeuchi, M. & Ohmori, M. ( 2002b; ). A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803. Plant Cell Physiol 43, 460–463.[CrossRef]
    [Google Scholar]
  78. Zhang, A., Wassarman, K. M., Ortega, J., Steven, A. C. & Storz, G. ( 2002; ). The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9, 11–22.[CrossRef]
    [Google Scholar]
  79. Zhang, A., Wassarman, K. M., Rosenow, C., Tjaden, B. C., Storz, G. & Gottesman, S. ( 2003; ). Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50, 1111–1124.[CrossRef]
    [Google Scholar]
  80. Zinchenko, V. V., Piven, I. V., Melnik, V. A. & Shestakov, S. V. ( 1999; ). Vectors for the complementation analysis of cyanobacterial mutants. Russ J Genet 35, 228–232.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020222-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020222-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error