1887

Abstract

The RpoN–RpoS alternative sigma factor pathway is essential for key adaptive responses by , particularly those involved in the infection of a mammalian host. A putative response regulator, Rrp2, is ostensibly required for activation of the RpoN-dependent transcription of . However, questions remain regarding the extent to which the three major constituents of this pathway (Rrp2, RpoN and RpoS) act interdependently. To assess the functional interplay between Rrp2, RpoN and RpoS, we employed microarray analyses to compare gene expression levels in , and mutants of parental strain 297. We identified 98 genes that were similarly regulated by Rrp2, RpoN and RpoS, and an additional 47 genes were determined to be likely regulated by this pathway. The substantial overlap between genes regulated by RpoS and RpoN provides compelling evidence that these two alternative sigma factors form a congruous pathway and that RpoN regulates gene expression through RpoS. Although several known virulence determinants were regulated by the RpoN–RpoS pathway, a defined function has yet to be ascribed to most of the genes substantially regulated by Rrp2, RpoN and RpoS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019992-0
2008-09-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2641.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019992-0&mimeType=html&fmt=ahah

References

  1. Blevins J. S., Revel A. T., Smith A. H., Bachlani G. N., Norgard M. V.. 2007; Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi . Appl Environ Microbiol73:1501–1513
    [Google Scholar]
  2. Brooks C. S., Vuppala S. R., Jett A. M., Akins D. R.. 2006; Identification of Borrelia burgdorferi outer surface proteins. Infect Immun74:296–304
    [Google Scholar]
  3. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P.. 1982; Lyme disease – a tick-borne spirochetosis?. Science216:1317–1319
    [Google Scholar]
  4. Burtnick M. N., Downey J. S., Brett P. J., Boylan J. A., Frye J. G., Hoover T. R., Gherardini F. C.. 2007; Insights into the complex regulation of rpoS in Borrelia burgdorferi . Mol Microbiol65:277–293
    [Google Scholar]
  5. Caimano M. J., Eggers C. H., Hazlett K. R., Radolf J. D.. 2004; RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun72:6433–6445
    [Google Scholar]
  6. Caimano M. J., Eggers C. H., Gonzalez C. A., Radolf J. D.. 2005; Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol187:7845–7852
    [Google Scholar]
  7. Caimano M. J., Iyer R., Eggers C. H., Gonzalez C., Morton E. A., Gilbert M. A., Schwartz I., Radolf J. D.. 2007; Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol65:1193–1217
    [Google Scholar]
  8. Callister S. M., Case K. L., Agger W. A., Schell R. F., Johnson R. C., Ellingson J. L.. 1990; Effects of bovine serum albumin on the ability of Barbour–Stoenner–Kelly medium to detect Borrelia burgdorferi . J Clin Microbiol28:363–365
    [Google Scholar]
  9. CDC 2007; Lyme disease – United States, 2003–2005. MMWR Morb Mortal Wkly Rep56:573–576
    [Google Scholar]
  10. Clifton D. R., Nolder C. L., Hughes J. L., Nowalk A. J., Carroll J. A.. 2006; Regulation and expression of bba66 encoding an immunogenic infection-associated lipoprotein in Borrelia burgdorferi . Mol Microbiol61:243–258
    [Google Scholar]
  11. Dong T., Kirchhof M. G., Schellhorn H. E.. 2008; RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics279:267–277
    [Google Scholar]
  12. Farewell A., Kvint K., Nystrom T.. 1998; Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol29:1039–1051
    [Google Scholar]
  13. Fikrig E., Narasimhan S.. 2006; Borrelia burgdorferi – traveling incognito?. Microbes Infect8:1390–1399
    [Google Scholar]
  14. Fisher M. A., Grimm D., Henion A. K., Elias A. F., Stewart P. E., Rosa P. A., Gherardini F. C.. 2005; Borrelia burgdorferi σ 54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A102:5162–5167
    [Google Scholar]
  15. Frank K. L., Bundle S. F., Kresge M. E., Eggers C. H., Samuels D. S.. 2003; aadA confers streptomycin resistance in Borrelia burgdorferi . J Bacteriol185:6723–6727
    [Google Scholar]
  16. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R.. other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature390:580–586
    [Google Scholar]
  17. Grimm D., Tilly K., Byram R., Stewart P. E., Krum J. G., Bueschel D. M., Schwan T. G., Policastro P. F., Elias A. F., Rosa P. A.. 2004; Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A101:3142–3147
    [Google Scholar]
  18. Hagman K. E., Lahdenne P., Popova T. G., Porcella S. F., Akins D. R., Radolf J. D., Norgard M. V.. 1998; Decorin-binding protein of Borrelia burgdorferi is encoded within a two-gene operon and is protective in the murine model of Lyme borreliosis. Infect Immun66:2674–2683
    [Google Scholar]
  19. He M., Boardman B. K., Yan D., Yang X. F.. 2007; Regulation of expression of the fibronectin-binding protein BBK32 in Borrelia burgdorferi . J Bacteriol189:8377–8380
    [Google Scholar]
  20. Hovius J. W., van Dam A. P., Fikrig E.. 2007; Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol23:434–438
    [Google Scholar]
  21. Hubner A., Yang X., Nolen D. M., Popova T. G., Cabello F. C., Norgard M. V.. 2001; Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. Proc Natl Acad Sci U S A98:12724–12729
    [Google Scholar]
  22. Hughes C. A., Kodner C. B., Johnson R. C.. 1992; DNA analysis of Borrelia burgdorferi NCH-1, the first northcentral U.S. human Lyme disease isolate. J Clin Microbiol30:698–703
    [Google Scholar]
  23. Jewett M. W., Lawrence K., Bestor A. C., Tilly K., Grimm D., Shaw P., VanRaden M., Gherardini F., Rosa P. A.. 2007; The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi . Mol Microbiol64:1358–1374
    [Google Scholar]
  24. Loewen P. C., Hu B., Strutinsky J., Sparling R.. 1998; Regulation in the rpoS regulon of Escherichia coli . Can J Microbiol44:707–717
    [Google Scholar]
  25. Lybecker M. C., Samuels D. S.. 2007; Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi . Mol Microbiol64:1075–1089
    [Google Scholar]
  26. Medrano M. S., Ding Y., Wang X. G., Lu P., Coburn J., Hu L. T.. 2007; Regulators of expression of the oligopeptide permease A proteins of Borrelia burgdorferi . J Bacteriol189:2653–2659
    [Google Scholar]
  27. Motaleb M. A., Miller M. R., Li C., Bakker R. G., Goldstein S. F., Silversmith R. E., Bourret R. B., Charon N. W.. 2005; CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J Bacteriol187:7963–7969
    [Google Scholar]
  28. Neelakanta G., Li X., Pal U., Liu X., Beck D. S., DePonte K., Fish D., Kantor F. S., Fikrig E.. 2007; Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog3:e33
    [Google Scholar]
  29. Nelson J. A., Bouseman J. K., Kitron U., Callister S. M., Harrison B., Bankowski M. J., Peeples M. E., Newton B. J., Anderson J. F.. 1991; Isolation and characterization of Borrelia burgdorferi from Illinois Ixodes dammini . J Clin Microbiol29:1732–1734
    [Google Scholar]
  30. Ojaimi C., Brooks C., Casjens S., Rosa P., Elias A., Barbour A., Jasinskas A., Benach J., Katona L.. other authors 2003; Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect Immun71:1689–1705
    [Google Scholar]
  31. Pal U., Yang X., Chen M., Bockenstedt L. K., Anderson J. F., Flavell R. A., Norgard M. V., Fikrig E.. 2004; OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest113:220–230
    [Google Scholar]
  32. Picken M. M., Picken R. N., Han D., Cheng Y., Ruzic-Sabljic E., Cimperman J., Maraspin V., Lotric-Furlan S., Strle F.. 1997; A two year prospective study to compare culture and polymerase chain reaction amplification for the detection and diagnosis of Lyme borreliosis. Mol Pathol50:186–193
    [Google Scholar]
  33. Pollack R. J., Telford S. R. III, Spielman A.. 1993; Standardization of medium for culturing Lyme disease spirochetes. J Clin Microbiol31:1251–1255
    [Google Scholar]
  34. Purser J. E., Norris S. J.. 2000; Correlation between plasmid content and infectivity in Borrelia burgdorferi . Proc Natl Acad Sci U S A97:13865–13870
    [Google Scholar]
  35. Purser J. E., Lawrenz M. B., Caimano M. J., Howell J. K., Radolf J. D., Norris S. J.. 2003; A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol48:753–764
    [Google Scholar]
  36. Rappas M., Bose D., Zhang X.. 2007; Bacterial enhancer-binding proteins: unlocking σ 54-dependent gene transcription. Curr Opin Struct Biol17:110–116
    [Google Scholar]
  37. Revel A. T., Talaat A. M., Norgard M. V.. 2002; DNA microarray analysis of differential gene expression in Borrelia burgdorferi , the Lyme disease spirochete. Proc Natl Acad Sci U S A99:1562–1567
    [Google Scholar]
  38. Revel A. T., Blevins J. S., Almazan C., Neil L., Kocan K. M., de la Fuente J., Hagman K. E., Norgard M. V.. 2005; bptA ( bbe16 ) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi , in its natural tick vector. Proc Natl Acad Sci U S A102:6972–6977
    [Google Scholar]
  39. Rosa P. A., Tilly K., Stewart P. E.. 2005; The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol3:129–143
    [Google Scholar]
  40. Schwan T. G., Piesman J.. 2000; Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi , during the chain of infection in ticks and mice. J Clin Microbiol38:382–388
    [Google Scholar]
  41. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A.. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A92:2909–2913
    [Google Scholar]
  42. Seshu J., Esteve-Gassent M. D., Labandeira-Rey M., Kim J. H., Trzeciakowski J. P., Hook M., Skare J. T.. 2006; Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi . Mol Microbiol59:1591–1601
    [Google Scholar]
  43. Setubal J. C., Reis M., Matsunaga J., Haake D. A.. 2006; Lipoprotein computational prediction in spirochaetal genomes. Microbiology152:113–121
    [Google Scholar]
  44. Shi W., Yang Z., Geng Y., Wolinsky L. E., Lovett M. A.. 1998; Chemotaxis in Borrelia burgdorferi . J Bacteriol180:231–235
    [Google Scholar]
  45. Shi Y., Xu Q., McShan K., Liang F. T.. 2008; Both decorin-binding proteins A and B are critical for overall virulence of Borrelia burgdorferi . Infect Immun76:1239–1246
    [Google Scholar]
  46. Singh S. K., Girschick H. J.. 2004; Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi . Lancet Infect Dis4:575–583
    [Google Scholar]
  47. Smith A. H., Blevins J. S., Bachlani G. N., Yang X. F., Norgard M. V.. 2007; Evidence that RpoS ( σ S) in Borrelia burgdorferi is controlled directly by RpoN( σ 54/ σ N). J Bacteriol189:2139–2144
    [Google Scholar]
  48. Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., Schmid G. P., Johnson E., Malawista S. E.. 1983; The spirochetal etiology of Lyme disease. N Engl J Med308:733–740
    [Google Scholar]
  49. Stevenson B., von Lackum K., Riley S. P., Cooley A. E., Woodman M. E., Bykowski T.. 2006; Evolving models of Lyme disease spirochete gene regulation. Wien Klin Wochenschr118:643–652
    [Google Scholar]
  50. Stewart P. E., Thalken R., Bono J. L., Rosa P.. 2001; Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi . Mol Microbiol39:714–721
    [Google Scholar]
  51. Stewart P. E., Byram R., Grimm D., Tilly K., Rosa P. A.. 2005; The plasmids of Borrelia burgdorferi : essential genetic elements of a pathogen. Plasmid53:1–13
    [Google Scholar]
  52. Terekhova D., Iyer R., Wormser G. P., Schwartz I.. 2006; Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol188:6124–6134
    [Google Scholar]
  53. Wang G., Iyer R., Bittker S., Cooper D., Small J., Wormser G. P., Schwartz I.. 2004; Variations in Barbour–Stoenner–Kelly culture medium modulate infectivity and pathogenicity of Borrelia burgdorferi clinical isolates. Infect Immun72:6702–6706
    [Google Scholar]
  54. Yang X., Popova T. G., Hagman K. E., Wikel S. K., Schoeler G. B., Caimano M. J., Radolf J. D., Norgard M. V.. 1999; Identification, characterization and expression of three new members of the Borrelia burgdorferi Mlp (2.9) lipoprotein gene family. Infect Immun67:6008–6018
    [Google Scholar]
  55. Yang X., Goldberg M. S., Popova T. G., Schoeler G. B., Wikel S. K., Hagman K. E., Norgard M. V.. 2000; Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi . Mol Microbiol37:1470–1479
    [Google Scholar]
  56. Yang X., Popova T. G., Goldberg M. S., Norgard M. V.. 2001; Influence of cultivation media on genetic regulatory patterns in Borrelia burgdorferi . Infect Immun69:4159–4163
    [Google Scholar]
  57. Yang X. F., Alani S. M., Norgard M. V.. 2003a; The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi . Proc Natl Acad Sci U S A100:11001–11006
    [Google Scholar]
  58. Yang X. F., Hubner A., Popova T. G., Hagman K. E., Norgard M. V.. 2003b; Regulation of expression of the paralogous Mlp family in Borrelia burgdorferi . Infect Immun71:5012–5020
    [Google Scholar]
  59. Yang X. F., Pal U., Alani S. M., Fikrig E., Norgard M. V.. 2004; Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med199:641–648
    [Google Scholar]
  60. Yang X. F., Lybecker M. C., Pal U., Alani S. M., Blevins J., Revel A. T., Samuels D. S., Norgard M. V.. 2005; Analysis of the ospC regulatory element controlled by the RpoN–RpoS regulatory pathway in Borrelia burgdorferi . J Bacteriol187:4822–4829
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019992-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019992-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error