A functional gene results in novel glycoforms on flagellin and altered autoagglutination behaviour Free

Abstract

Flagellin of is extensively modified with (derivatives of) pseudaminic acid. The flagellar glycosylation locus contains several genes with homopolymeric G-tracts prone to slipped-strand mispairing, some of which belong to the gene family. We investigated the function of the putative phase-variable gene of strain 108. A constructed mutant displayed unaltered flagella assembly and bacterial motility. 2D-PAGE analysis revealed that the flagellin of strain 108 migrated at a more acidic pI than the protein of the Maf4 mutant. MS-MS in combination with high-resolution matrix-assisted laser desorption/ionization Fourier transform ion cyclotron MS (MALDI-FT-ICR-MS) on flagellin-derived glycopeptides showed that the flagellins of the mutant lacked two previously unidentified modifications of pseudaminic acid. These glycoforms carried additional CO and CHO groups, consistent with the more acidic pI of the wild-type flagellin. Phenotypically, the mutant displayed strongly delayed bacterial autoagglutination. Collectively, our results suggest that the presence of a functional Maf4 expands the flagellin glycan repertoire with novel glycoforms of pseudaminic acid and, in the event of phase variation, alters the population behaviour of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019919-0
2008-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3385.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019919-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Guerry P., Power M. E., Lior H., Trust T. J. 1991; Analysis of the role of flagella in the heat-labile Lior serotyping scheme of thermophilic Campylobacters by mutant allele exchange. J Clin Microbiol 29:2438–2445
    [Google Scholar]
  2. Caldwell M. B., Guerry P., Lee E. C., Burans J. P., Walker R. I. 1985; Reversible expression of flagella in Campylobacter jejuni . Infect Immun 50:941–943
    [Google Scholar]
  3. Doig P., Kinsella N., Guerry P., Trust T. J. 1996; Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol 19:379–387
    [Google Scholar]
  4. Endtz H. P., Giesendorf B. A., van Belkum A., Lauwers S. J., Jansen W. H., Quint W. G. 1993; PCR-mediated DNA typing of Campylobacter jejuni isolated from patients with recurrent infections. Res Microbiol 144:703–708
    [Google Scholar]
  5. Golden N. J., Acheson D. W. 2002; Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 70:1761–1771
    [Google Scholar]
  6. Guerry P., Ewing C. P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S. 2006; Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311
    [Google Scholar]
  7. Kapitonov D., Yu R. K. 1999; Conserved domains of glycosyltransferases. Glycobiology 9:961–978
    [Google Scholar]
  8. Karlyshev A. V., Linton D., Gregson N. A., Wren B. W. 2002; A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni . Microbiology 148:473–480
    [Google Scholar]
  9. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163
    [Google Scholar]
  10. Lior H., Woodward D. L., Edgar J. A., LaRoche L. J. 1981; Serotyping by slide agglutination of Campylobacter jejuni and epidemiology. Lancet 2:1103–1104
    [Google Scholar]
  11. Logan S. M. 2006; Flagellar glycosylation – a new component of the motility repertoire?. Microbiology 152:1249–1262
    [Google Scholar]
  12. Logan S. M., Trust T. J., Guerry P. 1989; Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. J Bacteriol 171:3031–3038
    [Google Scholar]
  13. Logan S. M., Kelly J. F., Thibault P., Ewing C. P., Guerry P. 2002; Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol 46:587–597
    [Google Scholar]
  14. McNally D. J., Hui J. P., Aubry A. J., Mui K. K., Guerry P., Brisson J. R., Logan S. M., Soo E. C. 2006; Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J Biol Chem 281:18489–18498
    [Google Scholar]
  15. McNally D. J., Aubrey A. J., Hui J. P., Khieu N. H., Whitfield D., Ewing C. P., Guerry P., Brisson J. R., Logan S. M., Soo E. C. 2007; Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J Biol Chem 282:14463–14475
    [Google Scholar]
  16. Misawa N., Blaser M. J. 2000; Detection and characterization of autoagglutination activity by Campylobacter jejuni . Infect Immun 68:6168–6175
    [Google Scholar]
  17. Samatey F. A., Imada K., Nagashima S., Vonderviszt F., Kumasaka T., Yamamoto M., Namba K. 2001; Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–337
    [Google Scholar]
  18. Schirm M., Schoenhofen I. C., Logan S. M., Waldron K. C., Thibault P. 2005; Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal Chem 77:7774–7782
    [Google Scholar]
  19. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858
    [Google Scholar]
  20. Steen H., Kuster B., Fernandez M., Pandey A., Mann M. 2002; Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 277:1031–1039
    [Google Scholar]
  21. Thibault P., Logan S. M., Kelly J. F., Brisson J. R., Ewing C. P., Trust T. J., Guerry P. 2001; Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276:34862–34870
    [Google Scholar]
  22. van Alphen L. B., Bleumink-Pluym N. M. C., Rochat K. D., Van Balkom B. W. M., Wösten M. M. S. M., van Putten J. P. M. 2008; Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell Microbiol 10:53–66
    [Google Scholar]
  23. van Putten J. P. M., Weel J. F., Grassme H. U. 1994; Measurements of invasion by antibody labeling and electron microscopy. Methods Enzymol 236:420–437
    [Google Scholar]
  24. van Vliet A. H., Wooldridge K. G., Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
    [Google Scholar]
  25. Wong K. H., Skelton S. K., Patton C. M., Feeley J. C., Morris G. 1985; Typing of heat-stable and heat-labile antigens of Campylobacter jejuni and Campylobacter coli by coagglutination. J Clin Microbiol 21:702–707
    [Google Scholar]
  26. Wösten M. M. S. M. 1997 Initiation of transcription and gene organization in Campylobacter jejuni PhD thesis Utrecht University;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019919-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019919-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed