1887

Abstract

Phylogenetic relationships among picocyanobacteria from the Syn/Pro clade Sánchez-Baracaldo (2005) were determined using small subunit (ssu) rDNA sequences from novel culture isolates together with environmental samples from the Baltic Sea and seven freshwater lakes. The picocyanobacterial community comprised members of previously identified clades and of two previously undescribed clades. The number of well-supported clades suggests that freshwater picocyanobacterial communities encompass much greater diversity than is found in marine systems. To allow the quantification of community structure and temporal succession, clade-specific ssu rDNA TaqMan assays were designed and implemented. These assays were used to assess picocyanobacterial community structure in two lakes over an annual cycle in 2003/4, and in a small number of Baltic Sea samples collected in July 2003. In the lake-water samples, picocyanobacteria were found to be scarce during most of the year, with members of each clade reaching their peak abundance over a relatively short period during the summer (June to September), although representatives of the clade also developed an autumn peak extending towards the end of October. All four freshwater clades were present in the Baltic Sea, but their distribution was patchy over relatively short spatial scales. The use of molecular tools for describing and quantifying community structures reveals previously unexplored complexity in the phytoplankton and will facilitate the development of a more sophisticated understanding of community dynamics at the base of the food chains in lakes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019836-0
2008-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3347.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019836-0&mimeType=html&fmt=ahah

References

  1. Ahlgren, N. A., Rocap, G. & Chisholm, S. W. ( 2005; ). Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar physiologies. Environ Microbiol 8, 441–454.
    [Google Scholar]
  2. Andrén, E., Andrén, T. & Kunzendorf, H. ( 2000; ). Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. The Holocene 10, 687–702.[CrossRef]
    [Google Scholar]
  3. Beard, S. J., Handley, B. A., Hayes, P. K. & Walsby, A. E. ( 1999; ). The diversity of gas vesicle genes in Planktothrix rubescens from Lake Zürich. Microbiology 145, 2757–2768.
    [Google Scholar]
  4. Becker, S., Böger, P., Oehlmann, R. & Ernst, A. ( 2000; ). PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66, 4945–4953.[CrossRef]
    [Google Scholar]
  5. Becker, S., Fahrbach, M., Boger, P. & Ernst, A. ( 2002; ). Quantitative tracing, by Taq nuclease assays, of a Synechococcus ecotype in a highly diversified natural population. Appl Environ Microbiol 68, 4486–4494.[CrossRef]
    [Google Scholar]
  6. Becker, S., Singh, A. K., Postius, C., Boger, P. & Ernst, A. ( 2004; ). Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance. FEMS Microbiol Ecol 49, 181–190.[CrossRef]
    [Google Scholar]
  7. Becker, S., Richl, P. & Ernst, A. ( 2007; ). Seasonal and habitat related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol Ecol 62, 64–77.[CrossRef]
    [Google Scholar]
  8. Bianchi, T. S., Engelhaupt, E., Westman, P., Andren, T., Rolff, C. & Elmgren, R. ( 2000; ). Cyanobacterial blooms in the Baltic Sea: natural or human induced? Limnol Oceanogr 45, 716–726.[CrossRef]
    [Google Scholar]
  9. Callieri, C. & Stockner, J. ( 2000; ). Picocyanobacteria success in oligotrophic lakes: fact or fiction? J Limnol 59, 72–76.[CrossRef]
    [Google Scholar]
  10. Crosbie, N. D., Pöckl, M. & Weisse, T. ( 2003; ). Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol 69, 5716–5721.[CrossRef]
    [Google Scholar]
  11. Ernst, A., Becker, S., Wollenzien, U. I. A. & Postius, C. ( 2003; ). Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149, 217–228.[CrossRef]
    [Google Scholar]
  12. Ferris, M. J. & Palenik, B. ( 1998; ). Niche adaptation in ocean cyanobacteria. Nature 396, 226–228.[CrossRef]
    [Google Scholar]
  13. Fuller, N. J., Marie, D., Partensky, F., Vaulot, D., Post, A. F. & Scanlan, D. J. ( 2003; ). Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 69, 2430–2443.[CrossRef]
    [Google Scholar]
  14. Gaedke, U. & Weisse, T. ( 1998; ). Seasonal and interannual variability of picocyanobacteria in Lake Constance (1987–1997). Arch Hydrobiol Spec Issues Adv Limnol 53, 143–158.
    [Google Scholar]
  15. Garczarek, L., Dufresne, A., Rousvoal, S., West, N. J., Mazard, S., Marie, D., Claustre, H., Raimbault, P., Post, A. F. & other authors ( 2007; ). High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiol Ecol 60, 189–206.[CrossRef]
    [Google Scholar]
  16. Hawley, G. R. W. & Whitton, B. A. ( 1991; ). Seasonal changes in chlorophyll-containing picoplankton populations in ten lakes in northern England. Int Rev Gesamten Hydrobiol 76, 545–554.[CrossRef]
    [Google Scholar]
  17. Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y. & Mandel, M. ( 1979; ). Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111, 63–71.[CrossRef]
    [Google Scholar]
  18. Honda, D., Yokota, A. & Sugiyama, J. ( 1999; ). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strain. J Mol Evol 48, 723–739.[CrossRef]
    [Google Scholar]
  19. Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S. & Chisholm, S. W. ( 2006; ). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740.[CrossRef]
    [Google Scholar]
  20. Kerkhof, L. & Ward, B. B. ( 1993; ). Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl Environ Microbiol 59, 1303–1309.
    [Google Scholar]
  21. Koskenniemi, K., Lyra, C., Rajaniemi-Wacklin, P., Jokela, J. & Sivonen, K. ( 2007; ). Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73, 2173–2179.[CrossRef]
    [Google Scholar]
  22. Labarre, J., Chauvat, F. & Thuriaux, P. ( 1989; ). Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 171, 3449–3457.
    [Google Scholar]
  23. Litvaitis, M. K. ( 2002; ). A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia 468, 135–145.[CrossRef]
    [Google Scholar]
  24. Maeda, H., Kawai, A. & Tilzer, M. M. ( 1992; ). The water bloom of cyanobacterial picoplankton in lake Biwa, Japan. Hydrobiologia 248, 93–103.[CrossRef]
    [Google Scholar]
  25. Medlin, L. K. ( 2007; ). If everything is everywhere, do they share a common gene pool? Gene 406, 180–183.[CrossRef]
    [Google Scholar]
  26. Nübel, U., Garcia-Pichel, F. & Muyzer, G. ( 1997; ). PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63, 3327–3332.
    [Google Scholar]
  27. Padisák, J., Barbosa, F., Koschel, R. & Krienitz, L. ( 2003; ). Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Adv Limnol 58, 175–199.
    [Google Scholar]
  28. Pick, F.R. & Agbeti, M. ( 1991; ). Seasonal dynamics of picocyanobacteria in temperate lakes. Int Rev Gesamten Hydrobiol 76, 565–580.[CrossRef]
    [Google Scholar]
  29. Posada, D. & Crandall, K. A. ( 1998; ). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  30. Postius, C. & Ernst, A. ( 1999; ). Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem. Arch Microbiol 172, 69–75.[CrossRef]
    [Google Scholar]
  31. Rambaut, A. ( 1996; ). Sequence Alignment Editor Se-Al v2.0a9, Andrew Rambaut, Department of Zoology, University of Oxford, UK. http://evolve.zoo.ox.ac.uk.
  32. Rinta-Kanto, J. M., Ouellette, A. J. A., Boyer, G. L. & Twiss, M. R. ( 2005; ). Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ Sci Technol 39, 4198–4205.[CrossRef]
    [Google Scholar]
  33. Rippka, R., Deruelles, J., Watterbury, J. B., Herdman, M. & Stanier, R. V. ( 1979; ). Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  34. Robertson, B. R., Tezuka, N. & Watanabe, M. M. ( 2001; ). Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51, 861–871.[CrossRef]
    [Google Scholar]
  35. Rocap, G., Distel, L., Waterbury, J. B. & Chisholm, S. W. ( 2002; ). Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68, 1180–1191.[CrossRef]
    [Google Scholar]
  36. Sánchez-Baracaldo, P., Hayes, P. K. & Blank, C. E. ( 2005; ). Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3, 145–165.[CrossRef]
    [Google Scholar]
  37. Schober, E. & Kurmayer, R. ( 2006; ). Evaluation of different DNA sampling techniques for the application of the real-time PCR method for the quantification of cyanobacteria in water. Lett Appl Microbiol 42, 412–417.[CrossRef]
    [Google Scholar]
  38. Steglich, C., Post, A. F. & Hess, W. R. ( 2003; ). Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequences. Environ Microbiol 5, 681–690.[CrossRef]
    [Google Scholar]
  39. Stockner, J., Callieri, C. & Cronberg, G. ( 2000; ). Picoplankton and other non-bloom forming cyanobacteria in lakes. In Ecology of Cyanobacteria: their Diversity in Time and Space, pp. 195–238. Edited by B. Whitton & M. Potts. Kluwer Academic Publishers.
  40. Stomp, M., Huisman, J., De Jongh, F., Veraart, A. J., Gerla, D., Rijkeboer, M., Ibelings, B. W., Wollenzien, U. I. A. & Stal, L. J. ( 2004; ). Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107.[CrossRef]
    [Google Scholar]
  41. Swofford, D. ( 2001; ). paup*: Phylogenetic analysis using parsimony (* and other methods), versions 4.0b5 and 4.0b8a. Sunderland, MA: Sinauer Associates.
  42. Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. ( 2002; ). Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10, 134–142.[CrossRef]
    [Google Scholar]
  43. Urbach, E., Scanlan, D. J., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. ( 1998; ). Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 48, 723–739.
    [Google Scholar]
  44. Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L. & Sivonen, K. ( 2003; ). Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microbiol 69, 7289–7297.[CrossRef]
    [Google Scholar]
  45. Vincent, W. F., Bowman, J. P., Rankin, L. M. & McMeekin, T. A. ( 2000; ). Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In Microbial Biosystems: New Frontiers (Proceedings of the 8th International Symposium on Microbial Ecology), pp. 317–322. Edited by C. R. Bell, M. Brylinsky & P. Johnson-Green. Halifax: Atlantic Canada Society for Microbial Ecology.
  46. Voytek, M. A. & Ward, B. B. ( 1995; ). Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol 61, 2811
    [Google Scholar]
  47. Weisse, T. ( 1993; ). Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv Microb Ecol 13, 327–370.
    [Google Scholar]
  48. Wilmotte, A. & Herdman, M. ( 2001; ). Phylogenetic relationships among the Cyanobacteria based on 16S rRNA sequences. In Bergey's Manual of Systematic Bacteriology, vol. 1, The Archaea and the Deeply Branching and Phototropic Bacteria, pp. 487–493, 2nd edn. Edited by G. Garrity, D. R. Boone & R. W. Castenholz. New York: Springer-Verlag.
  49. Zwirglmaier, K., Heywood, J. L., Chamberlain, K., Woodward, E. M. S., Zubkov, M. V. & Scanlan, D. J. ( 2007; ). Basin-scale distribution patterns lineages in the Atlantic Ocean. Environ Microbiol 9, 1278–1290.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019836-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019836-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error