Induction of toxins in is associated with dramatic changes of its metabolism Free

Abstract

Certain amino acids, and cysteine in particular, promptly blocked toxin expression in strain VPI 10463 when added to late-exponential-phase peptone-yeast cultures, i.e. prior to normal induction of toxins A and B. Glucose reduced toxin yields by 80-fold, but only when supplemented at inoculation. Forty upregulated proteins were identified during maximum toxin expression, and most of these were enzymes involved in energy exchange, e.g. succinate, CO/folate and butyrate metabolism. Transcription of (toxin operon) and (CO/folate operon) was induced by 20- and 10-fold, respectively, and with strikingly similar kinetics between OD 0.8 and 1.2. The sigma factors and were upregulated simultaneously with and (3.5-fold increase of mRNA level), whereas transcription of , , and showed little or no correlation with that of and . The results suggest a connection between toxin expression, alternative energy metabolism and initial sporulation events in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019778-0
2008-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3430.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019778-0&mimeType=html&fmt=ahah

References

  1. Buck M., Gallegos M. T., Studholme D. J., Guo Y., Gralla J. D. 2000; The bacterial enhancer-dependent σ 54 ( σ N) transcription factor. J Bacteriol 182:4129–4136
    [Google Scholar]
  2. Choi S. K., Saier M. H. Jr 2005; Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol 187:6856–6861
    [Google Scholar]
  3. Debarbouille M., Gardan R., Arnaud M., Rapoport G. 1999; Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis . J Bacteriol 181:2059–2066
    [Google Scholar]
  4. Dineen S. S., Villapakkam A. C., Nordman J. T., Sonenshein A. L. 2007; Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:206–219
    [Google Scholar]
  5. Dupuy B., Sonenshein A. L. 1998; Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27:107–120
    [Google Scholar]
  6. Fisher S. H. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol 32:223–232
    [Google Scholar]
  7. Gottschalk G. 1986 Bacterial Metabolism , 2nd edn. New York: Springer Verlag;
    [Google Scholar]
  8. Guedon E., Serror P., Ehrlich S. D., Renault P., Delorme C. 2001; Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis . Mol Microbiol 40:1227–1239
    [Google Scholar]
  9. Hadjifrangiskou M., Chen Y., Koehler T. M. 2007; The alternative sigma factor σ H is required for toxin gene expression by Bacillus anthracis . J Bacteriol 189:1874–1883
    [Google Scholar]
  10. Hundsberger T., Braun V., Weidmann M., Leukel P., Sauerborn M., von Eichel-Streiber C. 1997; Transcription analysis of the genes tcdAE of the pathogenicity locus of Clostridium difficile . Eur J Biochem 244:735–742
    [Google Scholar]
  11. Ikeda D., Karasawa T., Yamakawa K., Tanaka R., Namiki M., Nakamura S. 1998; Effect of isoleucine on toxin production by Clostridium difficile in a defined medium. Zentralbl Bakteriol 287:375–386
    [Google Scholar]
  12. Jackson S., Calos M., Myers A., Self W. T. 2006; Analysis of proline reduction in the nosocomial pathogen Clostridium difficile . J Bacteriol 188:8487–8495
    [Google Scholar]
  13. Karasawa T., Maegawa T., Nojiri T., Yamakawa K., Nakamura S. 1997; Effect of arginine on toxin production by Clostridium difficile in defined medium. Microbiol Immunol 41:581–585
    [Google Scholar]
  14. Karlsson S., Burman L. G., Åkerlund T. 1999; Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145:1683–1693
    [Google Scholar]
  15. Karlsson S., Lindberg A., Norin E., Burman L. G., Åkerlund T. 2000; Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile . Infect Immun 68:5881–5888
    [Google Scholar]
  16. Karlsson S., Dupuy B., Mukherjee K., Norin E., Burman L. G., Åkerlund T. 2003; Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71:1784–1793
    [Google Scholar]
  17. Kim J., Darley D., Buckel W. 2005; 2-Hydroxyisocaproyl-CoA dehydratase and its activator from Clostridium difficile . FEBS J 272:550–561
    [Google Scholar]
  18. Ljungdahl L. G. 1986; The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450
    [Google Scholar]
  19. Maegawa T., Karasawa T., Otha T., Wang X., Kato H., Hayashi H., Nakamura S. 2002; Linkage between toxin production and purine biosynthesis in Clostridium difficile . J Med Microbiol 51:34–41
    [Google Scholar]
  20. Mani N., Dupuy B. 2001; Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98:5844–5849
    [Google Scholar]
  21. Mani N., Lyras D., Barroso L., Howarth P., Wilkins T., Rood J. I., Sonenshein A. L., Dupuy B. 2002; Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184:5971–5978
    [Google Scholar]
  22. Matamouros S., England P., Dupuy B. 2007; Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64:1274–1288
    [Google Scholar]
  23. Merrick M. J. 1993; In a class of its own – the RNA polymerase sigma factor sigma 54 (sigma N. Mol Microbiol 10:903–909
    [Google Scholar]
  24. Molle V., Nakaura Y., Shivers R. P., Yamaguchi H., Losick R., Fujita Y., Sonenshein A. L. 2003; Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185:1911–1922
    [Google Scholar]
  25. Mukherjee K., Karlsson S., Burman L. G., Åkerlund T. 2002; Proteins released during high toxin production in Clostridium difficile . Microbiology 148:2245–2253
    [Google Scholar]
  26. O'Connor J. R., Lyras D., Farrow K. A., Adams V., Powell D. R., Hinds J., Cheung J. K., Rood J. I. 2006; Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61:1335–1351
    [Google Scholar]
  27. Petranovic D., Guedon E., Sperandio B., Delorme C., Ehrlich D., Renault P. 2004; Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Mol Microbiol 53:613–621
    [Google Scholar]
  28. Poxton I. R., McCoubrey J., Blair G. 2001; The pathogenicity of Clostridium difficile . Clin Microbiol Infect 7:421–427
    [Google Scholar]
  29. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15:1093–1103
    [Google Scholar]
  30. Serror P., Sonenshein A. L. 1996a; Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol 20:843–852
    [Google Scholar]
  31. Serror P., Sonenshein A. L. 1996b; CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178:5910–5915
    [Google Scholar]
  32. Shivers R. P., Sonenshein A. L. 2004; Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol 53:599–611
    [Google Scholar]
  33. Sonenshein A. L. 2007; Control of key metabolic intersections in Bacillus subtilis . Nat Rev Microbiol 5:917–927
    [Google Scholar]
  34. Stadtman T. C., Elliot P. 1957; Purification and properties of d-proline reductase and a proline racemase from Clostridium sticklandii . J Biol Chem 228:983–997
    [Google Scholar]
  35. Weir J., Predich M., Dubnau E., Nair G., Smith I. 1991; Regulation of spo0H, a gene coding for the Bacillus subtilis σ H factor. J Bacteriol 173:521–529
    [Google Scholar]
  36. Wood H. G., Ragsdale S. W., Pezacka E. 1986; A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen. Biochem Int 12:421–440
    [Google Scholar]
  37. Yamakawa K., Karasawa T., Ikoma S., Nakamura S. 1996; Enhancement of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol 44:111–114
    [Google Scholar]
  38. Yamakawa K., Karasawa T., Ohta T., Hayashi H., Nakamura S. 1998; Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions. J Med Microbiol 47:767–771
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019778-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019778-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed