1887

Abstract

Survival strategies exhibited over 4 years by phylotype (ph) II biovar (bv) 2 in environmental water microcosms were examined. The bacterium is a devastating phytopathogen whose ph II bv 2 causes bacterial wilt in solanaceous crops and ornamental plants. Outbreaks of the disease may originate from dissemination of the pathogen in watercourses, where it has to cope with prolonged nutrient limitation. To ascertain the effect of long-term starvation on survival and pathogenicity of in natural water microcosms, survival experiments were conducted. Microcosms were prepared from different sterile river water samples, inoculated separately with two European strains of ph II at 10 c.f.u. ml and maintained at 24 °C for 4 years. In all assayed waters, starved remained in a non-growing but culturable state during the first year, maintaining approximately the initial numbers. Thereafter, part of the population of progressively lost the ability to form colonies, and non-culturable but metabolically active cells appeared. During the whole period, the bacterium remained pathogenic on host plants and underwent a transition from typical bacilli to small cocci which tended to aggregate. Some starved cells filamented and formed buds. Starvation response, viable but non-culturable state, morphological changes and aggregation have not previously been reported for this pathogen as survival mechanisms induced in oligotrophic conditions. The potential existence of long-starved pathogenic cells in environmental waters may raise new concerns about the epidemiology of bacterial wilt disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019448-0
2008-11-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3590.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019448-0&mimeType=html&fmt=ahah

References

  1. Álvarez B., López M. M., Biosca E. G. 2007; Influence of native microbiota on survival of Ralstonia solanacearum phylotype II in river water microcosms. Appl Environ Microbiol 73:7210–7217
    [Google Scholar]
  2. Anonymous 1998; Council Directive 98/57/EC of 20 July 1998 on the control of Ralstonia solanacearum (Smith) Yabuuchi et al . Off J Eur Communities L235:1–39
    [Google Scholar]
  3. Anonymous 2000; Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community. Off J Eur Communities L169:1–112
    [Google Scholar]
  4. Anonymous 2006; Commission Directive 2006/63/EC of 14 July 2006: amending Annexes II to VII to Council Directive 98/57/EC on the control of Ralstonia solanacearum (Smith) Yabuuchi et al . Off J Eur Communities L206:36–106
    [Google Scholar]
  5. Besnard V., Federighi M., Cappelier J. M. 2000; Evidence of viable but non-culturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining. Food Microbiol 17:697–704
    [Google Scholar]
  6. Blat Y., Eisenbach M. 1995; Tar-dependent and -independent pattern formation by Salmonella typhimurium . J Bacteriol 177:1683–1691
    [Google Scholar]
  7. Boulos L., Prévost M., Barbeau B., Coallier J., Desjardins R. 1999; LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86
    [Google Scholar]
  8. Byrd J. J. 2000; Morphological changes leading to the nonculturable state. In Nonculturable Microorganisms in the Environment pp 7–18 Edited by Colwell R. R., Grimes D. J. Washington DC: American Society for Microbiology;
    [Google Scholar]
  9. Caruso P., Palomo J. L., Bertolini E., Álvarez B., López M. M., Biosca E. G. 2005; Seasonal variation of Ralstonia solanacearum biovar 2 populations in a Spanish river: recovery of stressed cells at low temperatures. Appl Environ Microbiol 71:140–148
    [Google Scholar]
  10. Chaiyanan S., Chaiyanan S., Grim C., Maugel T., Huq A., Colwell R. R. 2007; Ultrastructure of coccoid viable but non-culturable Vibrio cholerae . Environ Microbiol 9:393–402
    [Google Scholar]
  11. Colwell R. R., Huq A. 1994; Vibrios in the environment: viable but nonculturable Vibrio cholerae . In Vibrio Cholerae and Cholera: Molecular to Global Perspectives pp 117–133 Edited by Wachsmuth I. K., Blake P. A., Olsvik Ø. Washington DC: American Society for Microbiology;
    [Google Scholar]
  12. Denny T. P., Brumbley S. M., Carney B. F., Clough S. J., Schell M. A. 1994; Phenotype conversion of Pseudomonas solanacearum: its molecular basis and potential function. In Bacterial Wilt: the Disease and its Causative Agent, Pseudomonas solanacearum pp 137–143 Edited by Hayward A. C., Hartman G. L. Wallingford, UK: CAB International;
    [Google Scholar]
  13. Elphinstone J. G. 2005; The current bacterial wilt situation: a global overview. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex pp 9–28 Edited by Allen C., Prior P., Hayward A. C. St Paul, MN: APS Press;
    [Google Scholar]
  14. Elphinstone J. G., Hennessy J., Wilson J. K., Stead D. E. 1996; Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull 26:663–678
    [Google Scholar]
  15. Fegan M., Prior P. 2005; How complex is the “ Ralstonia solanacearum species complex”?. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex pp 449–461 Edited by Allen C., Prior P., Hayward A. C. St Paul, MN: APS Press;
    [Google Scholar]
  16. Grey B. E., Steck T. R. 2001; The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol 67:3866–3872
    [Google Scholar]
  17. Hayward A. C. 1991; Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum . Annu Rev Phytopathol 29:65–87
    [Google Scholar]
  18. Hayward A. C. 1994; The hosts of Pseudomonas solanacearum . In Bacterial Wilt: the Disease and its Causative Agent,Pseudomonas solanacearum pp 9–24 Edited by Hayward A. C., Hartman G. L. Wallingford: CAB International;
    [Google Scholar]
  19. Heim S., Lleó M. D. M., Bonato B., Guzmán C. A., Canepari P. 2002; The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745
    [Google Scholar]
  20. Hong J., Ji P., Momol M. T., Jones J. B., Olson S. M., Pradhanang P., Guven K. 2005; Ralstonia solanacearum detection in tomato irrigation ponds and weeds. In Proceedings of the First International Symposium on Tomato Diseases pp 309–311 Edited by Momol M. T., Ji P., Jones J. B. Orlando, FL: ISHS;
    [Google Scholar]
  21. Kelman A. 1953 The Bacterial Wilt Caused by Pseudomonas solanacearum. A Literature Review and Bibliography Raleigh, NC: North Carolina State College;
    [Google Scholar]
  22. Kelman A. 1956; Factors influencing viability and variation in cultures of Pseudomonas solanacearum . Phytopathology 46:16–17
    [Google Scholar]
  23. Kogure K., Simidu U., Taga N. 1979; A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420
    [Google Scholar]
  24. Lambert C. D. 2002; Agricultural Bioterrorism Protection Act of 2002: possession, use, and transfer of biological; agents and toxins; interim and final rule (7 CFR Part 331. Fed Regist 67:76908–76938
    [Google Scholar]
  25. Lázaro B., Cárcamo J., Audícana A., Perales I., Fernández-Astorga A. 1999; Viability and DNA maintenance in nonculturable spiral Campylobacter jejuni cells after long-term exposure to low temperatures. Appl Environ Microbiol 65:4677–4681
    [Google Scholar]
  26. López M. M., Biosca E. G. 2005; Potato bacterial wilt management: new prospects for an old problem. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex pp 205–224 Edited by Allen C., Prior P., Hayward A. C. St Paul, MN: APS Press;
    [Google Scholar]
  27. Morita R. Y. 1997 In Bacteria in Oligotrophic Environments. Starvation-Survival Lifestyle pp 368–385 Edited by Reddy C. A., Chakrabarty A. M., Demain A. L., Tiedje J. M. New York: Chapman & Hall;
    [Google Scholar]
  28. Novitsky J. A., Morita R. Y. 1976; Morphological characterization of small cells resulting from nutrient starvation of a pyschrophilic marine Vibrio . Appl Environ Microbiol 32:617–622
    [Google Scholar]
  29. Oliver J. D. 1987; Heterotrophic bacterial populations of the Black Sea. Biol Oceanogr 4:83–97
    [Google Scholar]
  30. Oliver J. D. 2005; The viable but nonculturable state in bacteria. J Microbiol 43:93–100
    [Google Scholar]
  31. Ridé M. 1969; Bactéries phytopathogènes et maladies bactériennes des végétaux. In Les Bactérioses et les Viroses des Arbres Fruitiers pp 4–59 Edited by Ponsot M. Paris: Viennot-Bourgin;
    [Google Scholar]
  32. Rollins D. M., Colwell R. R. 1986; Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52:531–538
    [Google Scholar]
  33. Roszak D. B., Colwell R. R. 1987; Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379
    [Google Scholar]
  34. Ruiz J. A., López N. I., Fernández R. O., Méndez B. S. 2001; Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol 67:225–230
    [Google Scholar]
  35. Shleeva M. O., Bagramyan K., Telkov M. V., Mukamolova G. V., Young M., Kell D. B., Kaprelyants A. S. 2002; Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:1581–1591
    [Google Scholar]
  36. Tanaka Y., Noda N. 1973; Studies on the factors affecting survival of Pseudomonas solanacearum E.F. Smith, the causal agent of tobacco wilt disease. Bull Okayama Tobacco Exp Stn 32:81–94
    [Google Scholar]
  37. Thomas C., Hill D. J., Mabey M. 1999; Morphological changes of synchronized Campylobacter jejuni populations during growth in single phase liquid culture. Lett Appl Microbiol 28:194–198
    [Google Scholar]
  38. van Elsas J. D., Kastelein P., van Bekkum P., van der Wolf J. M., de Vries P. M., van Overbeek L. S. 2000; Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90:1358–1366
    [Google Scholar]
  39. van Elsas J. D., Kastelein P., de Vries P. M., van Overbeek L. S. 2001; Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can J Microbiol 47:842–854
    [Google Scholar]
  40. van Elsas J. D., van Overbeek L. S., Trigalet A. 2005; The viable but non-culturable state in Ralstonia solanacearum: is there a realistic threat to our strategic concepts?. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex pp103–119 Edited by Allen C., Prior P., Hayward A. C. St Paul, MN: APS Press;
    [Google Scholar]
  41. van Overbeek L. S., Bergervoet J. H. W., Jacobs F. H. H., van Elsas J. D. 2004; The low-temperature-induced viable-but-nonculturable state affects the virulence of Ralstonia solanacearum biovar 2. Phytopathology 94:463–469
    [Google Scholar]
  42. Wainwright M., Canham L. T., al-Wajeeh K., Reeves C. L. 1999; Morphological changes (including filamentation) in Escherichia coli grown under starvation conditions on silicon wafers and other surfaces. Lett Appl Microbiol 29:224–227
    [Google Scholar]
  43. Wakimoto S., Utatsu I., Matsuo N., Hayashi N. 1982; Multiplication of Pseudomonas solanacearum in pure water. Nippon Shokubutsu Byori Gakkaiho 48:620–627
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2008/019448-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019448-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error