1887

Abstract

is the aetiological agent of primary amoebic meningoencephalitis (PAM). This parasite invades its host by penetrating the olfactory mucosa. During the initial stages of infection, the host response is initiated by the secretion of mucus that traps the trophozoites. Despite this response, some trophozoites are able to reach, adhere to and penetrate the epithelium. In the present work, we evaluated the effect of mucins on amoebic adherence and cytotoxicity to Madin–Darby canine kidney (MDCK) cells and the MUC5AC-inducing cell line NCI-H292. We showed that mucins inhibited the adhesion of amoebae to both cell lines; however, this inhibition was overcome in a time-dependent manner. re-established the capacity to adhere faster than . Moreover, mucins reduced the cytotoxicity to target cells and the progression of the illness in mice. In addition, we demonstrated mucinolytic activity in both strains and identified a 37 kDa protein with mucinolytic activity. The activity of this protein was inhibited by cysteine protease inhibitors. Based on these results, we suggest that mucus, including its major mucin component, may act as an effective protective barrier that prevents most cases of PAM; however, when the number of amoebae is sufficient to overwhelm the innate immune response, the parasites may evade the mucus by degrading mucins via a proteolytic mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019380-0
2008-12-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3895.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019380-0&mimeType=html&fmt=ahah

References

  1. Aldape, K., Huizinga, H., Bouvier, J. & McKerrow, J. ( 1994; ). Naegleria fowleri: characterization of secreted histolytic cysteine protease. Exp Parasitol 78, 230–241.[CrossRef]
    [Google Scholar]
  2. Barbour, S. E. & Marciano-Cabral, F. ( 2001; ). Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A2. Biochim Biophys Acta 1530, 123–133.[CrossRef]
    [Google Scholar]
  3. Bland, J. M. & Altman, D. G. ( 2004; ). The logrank test. BMJ 328, 1073 [CrossRef]
    [Google Scholar]
  4. Carter, R. F. ( 1970; ). Description of a Naegleria sp. isolated from two cases of primary amoebic meningoencephalitis, and of the experimental pathological changes induced by it. J Pathol 100, 217–244.[CrossRef]
    [Google Scholar]
  5. Cervantes-Sandoval, I., Serrano-Luna, J. J., García-Latorre, E., Tsutsumi, V. & Shibayama, M. ( 2008; ). Characterization of brain inflammation during primary amoebic meningoencephalitis. Parasitol Int 57, 307–313.[CrossRef]
    [Google Scholar]
  6. Chadee, K., Petri, W. A., Innes, D. J. & Ravdin, J. I. ( 1987; ). Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest 80, 1245–1254.[CrossRef]
    [Google Scholar]
  7. Fulford, D. E. & Marciano-Cabral, F. ( 1986; ). Cytolytic activity of Naegleria fowleri cell-free extract. J Protozool 33, 498–502.[CrossRef]
    [Google Scholar]
  8. Herbst, R., Ott, C., Jacobs, T., Marti, T., Marciano-Cabral, F. & Leippe, M. ( 2002; ). Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem 277, 22353–22360.[CrossRef]
    [Google Scholar]
  9. Herbst, R., Marciano-Cabral, F. & Leippe, M. ( 2004; ). Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem 279, 25955–25958.[CrossRef]
    [Google Scholar]
  10. Jarolim, K. L., McCosh, J. K., Howard, M. J. & John, D. T. ( 2000; ). A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol 86, 50–55.[CrossRef]
    [Google Scholar]
  11. Jarolim, K. L., McCosh, J. K. & Howard, M. J. ( 2002; ). The role of blood vessels and lungs in the dissemination of Naegleria fowleri following intranasal inoculation in mice. Folia Parasitol (Praha) 49, 183–188.[CrossRef]
    [Google Scholar]
  12. Kyle, D. E. & Noblet, G. P. ( 1986; ). Seasonal distribution of thermotolerant free-living amoebae. I. Willard's pond. J Protozool 33, 422–434.[CrossRef]
    [Google Scholar]
  13. Lehker, M. W. & Sweeney, D. ( 1999; ). Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm Infect 75, 231–238.[CrossRef]
    [Google Scholar]
  14. Mantle, M. & Rombough, C. ( 1993; ). Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect Immun 61, 4131–4138.
    [Google Scholar]
  15. Marciano-Cabral, F. & Cabral, G. A. ( 2007; ). Immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunol Med Microbiol 51, 243–259.
    [Google Scholar]
  16. Mat Amin, N. ( 2004; ). Proteinases in Naegleria fowleri strain NF3, a pathogenic amoeba: preliminary study. Trop Biomed 21, 57–60.
    [Google Scholar]
  17. Moncada, D., Keller, K. & Chadee, K. ( 2003a; ). Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucins and alter its protective function. Infect Immun 71, 838–844.[CrossRef]
    [Google Scholar]
  18. Moncada, D. M., Kammanadiminti, S. J. & Chadee, K. ( 2003b; ). Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 19, 305–311.[CrossRef]
    [Google Scholar]
  19. Moncada, D., Keller, K. & Chadee, K. ( 2005; ). Entamoeba histolytica-secreted products degrade colonic mucin oligosaccharides. Infect Immun 73, 3790–3793.[CrossRef]
    [Google Scholar]
  20. Moncada, D. M., Keller, K., Ankri, S., Mirelman, D. & Chadee, K. ( 2006; ). Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 130, 721–730.[CrossRef]
    [Google Scholar]
  21. Rojas-Hernández, S., Jarillo-Luna, A., Rodríguez-Monroy, M., Moreno-Fierros, L. & Campos-Rodríguez, R. ( 2004; ). Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res 94, 31–36.
    [Google Scholar]
  22. Schuster, F. L. & Visvesvara, G. S. ( 2004; ). Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34, 1001–1027.[CrossRef]
    [Google Scholar]
  23. Serrano-Luna, J. J., Cervantes-Sandoval, I., Tsutsumi, V. & Shibayama, M. ( 2007; ). A biochemical characterization of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi. J Eukaryot Microbiol 54, 411–417.[CrossRef]
    [Google Scholar]
  24. Shibayama, M., Serrano-Luna, J. J., Rojas-Hernández, S., Campos-Rodríguez, R. & Tsutsumi, V. ( 2003; ). Interaction of secretory immunoglobulin A antibodies with Naegleria fowleri trophozoites and collagen type I. Can J Microbiol 49, 164–170.[CrossRef]
    [Google Scholar]
  25. Shimizu, T., Shimizu, M., Hattori, R., Gabazza, E. C. & Majima, Y. ( 2003; ). In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 168, 581–587.[CrossRef]
    [Google Scholar]
  26. Shirazi, T., Longman, R. J., Corfield, A. P. & Probert, C. S. J. ( 2000; ). Mucins and inflammatory bowel disease. Postgrad Med J 76, 473–478.[CrossRef]
    [Google Scholar]
  27. Slomiany, B. L., Murty, V. L., Piotrowsky, J., Grabska, M. & Slomiany, A. ( 1992; ). Glycosulfatase activity of Helicobacter pylori toward gastric mucin. Biochem Biophys Res Commun 183, 506–513.[CrossRef]
    [Google Scholar]
  28. Thornton, D. J. & Sheehan, J. K. ( 2004; ). From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc 1, 54–61.[CrossRef]
    [Google Scholar]
  29. Yoder, J. S., Blackborn, B. G., Craun, G. F., Hill, V., Levy, D. A., Chen, N., Lee, S. H., Calderon, R. L. & Beach, M. J. ( 2004; ). Surveillance for waterborne disease outbreaks associated with recreational water – United States, 2001–2002. MMWR Surveill Summ 53, 1–22.
    [Google Scholar]
  30. Young, J. D. & Lowrey, D. M. ( 1989; ). Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri. J Biol Chem 264, 1077–1083.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019380-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019380-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error