1887

Abstract

Cytosolic -mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free -oligosaccharides. Two soluble -mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in . We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched -mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptide of 52 kDa that was associated with mannosidase activity and was recognized by an anti-1,2-mannosidase antibody. The -mannan core trimming properties of the purified enzyme E-I were consistent with its classification as a family 47 1,2-mannosidase. Differential density-gradient centrifugation of homogenates revealed that 1,2-mannosidase E-I was localized to the cytosolic fraction and Golgi-derived vesicles, and that a 65 kDa membrane-bound 1,2-mannosidase was present in endoplasmic reticulum and Golgi-derived vesicles. Distribution of -mannosidase activity in a Δ null mutant or in wild-type protoplasts treated with monensin demonstrated that the membrane-bound 1,2-mannosidase is processed by Kex2 protease into E-I, recognizing an atypical cleavage site of the precursor. Analysis of cytosolic free -oligosaccharides revealed that cytosolic 1,2-mannosidase E-I trims free ManGlcNAc isomer B into ManGlcNAc isomer B. This is believed to be the first report demonstrating the presence of soluble 1,2-mannosidase from the glycosyl hydrolases family 47 in a cytosolic compartment of the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019315-0
2008-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3782.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019315-0&mimeType=html&fmt=ahah

References

  1. Arnaud, M. B., Costanzo, M. C., Skrzypek, M. S., Binkley, G., Lane, C., Miyasato, S. R. & Sherlock, G. ( 2005; ). The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acids Res 33, D358–D363.[CrossRef]
    [Google Scholar]
  2. Bader, O., Schaller, M., Klein, S., Kukula, J., Haack, K., Mühlschlegel, F., Korting, H. C., Schäfer, W. & Hube, B. ( 2001; ). The KEX2 gene of Candida glabrata is required for cell surface integrity. Mol Microbiol 41, 1431–1444.[CrossRef]
    [Google Scholar]
  3. Beaufay, H., Amar-Costesec, A., Thines-Sempoux, D., Wibo, M., Robbi, M. & Berthet, J. ( 1974; ). Analytical study of microsomes and isolated subcellular membranes from rat liver. J Cell Biol 61, 213–231.[CrossRef]
    [Google Scholar]
  4. Bevan, A., Brenner, C. & Fuller, R. S. ( 1998; ). Quantitative assessment of enzyme specificity in vivo: P2 recognition by Kex2 protease defined in a genetic system. Proc Natl Acad Sci U S A 95, 10384–10389.[CrossRef]
    [Google Scholar]
  5. Bischoff, J. & Kornfeld, R. ( 1986; ). The soluble form of rat liver alpha-mannosidase is immunologically related to the endoplasmic reticulum membrane alpha-mannosidase. J Biol Chem 261, 4758–4765.
    [Google Scholar]
  6. Bischoff, J., Moremen, K. W. & Lodish, H. F. ( 1990; ). Isolation, characterization, and expression of cDNA encoding a rat liver endoplasmic reticulum alpha-mannosidase. J Biol Chem 265, 17110–17117.
    [Google Scholar]
  7. Bloom, G. S. & Brashear, T. A. ( 1989; ). A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem 264, 16083–16092.
    [Google Scholar]
  8. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  9. Brand, A., MacCallum, D. M., Brown, A. J. P., Gow, N. A. R. & Odds, F. C. ( 2004; ). Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3, 900–909.[CrossRef]
    [Google Scholar]
  10. Brenner, C. & Fuller, R. S. ( 1992; ). Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A 89, 922–926.[CrossRef]
    [Google Scholar]
  11. Bryant, N. J. & Stevens, T. H. ( 1998; ). Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62, 230–247.
    [Google Scholar]
  12. Chantret, I., Frenoy, J. P. & Moore, S. E. ( 2003; ). Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: roles for peptide : N-glycanase (Png1p) and vacuolar mannosidase (Ams1p). Biochem J 373, 901–908.[CrossRef]
    [Google Scholar]
  13. Chrispeels, M. J. ( 1983; ). The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotyledons. Planta 158, 140–151.[CrossRef]
    [Google Scholar]
  14. Chrispeels, M. J., Higgins, T. J., Craig, S. & Spencer, D. ( 1982; ). Role of the endoplasmic reticulum in the synthesis of reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J Cell Biol 93, 5–14.[CrossRef]
    [Google Scholar]
  15. Costanzi, E., Balducci, C., Cacan, R., Duvet, S., Orlacchio, A. & Beccari, T. ( 2006; ). Cloning and expression of mouse cytosolic α-mannosidase (Man2c1). Biochim Biophys Acta 1760, 1580–1586.[CrossRef]
    [Google Scholar]
  16. Daniel, P. F., Winchester, B. & Warren, C. D. ( 1994; ). Mammalian α-mannosidases – multiple forms but a common purpose? Glycobiology 4, 551–566.[CrossRef]
    [Google Scholar]
  17. De Gasperi, R., Al Daher, S., Winchester, B. G. & Warren, C. D. ( 1992; ). Substrate specificity of the bovine and feline neutral alpha-mannosidases. Biochem J 286, 47–53.
    [Google Scholar]
  18. Dutta, P. & Majumder, G. C. ( 1984; ). Enzymic characteristics of the isoenzymes of rat epididymal neutral alpha-mannosidases and their changes during development in vivo. Biochem J 218, 489–494.
    [Google Scholar]
  19. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  20. Fuller, R. S., Sterne, R. E. & Thorner, J. ( 1988; ). Enzymes required for yeast prohormone processing. Annu Rev Physiol 50, 345–362.[CrossRef]
    [Google Scholar]
  21. Fuller, R. S., Brake, A. & Thorner, J. ( 1989; ). Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A 86, 1434–1438.[CrossRef]
    [Google Scholar]
  22. Gillum, A. M., Tsay, E. Y. H. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
    [Google Scholar]
  23. Grard, T., Saint-Pol, A., Haeuw, J., Alonso, C., Wieruszeski, J., Strecker, G. & Michalski, J. ( 1994; ). Soluble forms of α-d-mannosidases from rat liver. Eur J Biochem 223, 99–106.[CrossRef]
    [Google Scholar]
  24. Grard, T., Herman, V., Saint-Pol, A., Kmiecik, D., Labiau, O., Mir, A. M., Alonso, C., Verbert, A., Cacan, R. & Michalski, J. C. ( 1996; ). Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-d-mannosidase. Biochem J 316, 787–792.
    [Google Scholar]
  25. Haeuw, J. F., Strecker, G., Wieruszeski, J. M., Montreuil, J. & Michalski, J. C. ( 1991; ). Substrate specificity of rat liver cytosolic alpha-d-mannosidase. Novel degradative pathway for oligomannoside type glycans. Eur J Biochem 202, 1257–1268.[CrossRef]
    [Google Scholar]
  26. Harris, S. L. & Waters, M. G. ( 1996; ). Localization of a yeast early Golgi mannosyltransferase, Och1p, involves retrograde transport. J Cell Biol 132, 985–998.[CrossRef]
    [Google Scholar]
  27. Helenius, A. & Aebi, M. ( 2004; ). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019–1049.[CrossRef]
    [Google Scholar]
  28. Henrissat, B. & Davis, G. ( 1997; ). Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7, 637–644.[CrossRef]
    [Google Scholar]
  29. Herscovics, A. ( 1999a; ). Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426, 275–285.[CrossRef]
    [Google Scholar]
  30. Herscovics, A. ( 1999b; ). Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473, 96–107.[CrossRef]
    [Google Scholar]
  31. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K. ( 2003; ). Global analysis of protein localization in budding yeast. Nature 425, 686–691.[CrossRef]
    [Google Scholar]
  32. Jakob, C. A., Bodmer, D., Spirig, U., Battig, P., Marcil, A., Dignard, D., Bergeron, J. J., Thomas, D. Y. & Aebi, M. ( 2001; ). Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2, 423–430.[CrossRef]
    [Google Scholar]
  33. Jelinek-Kelly, S. & Herscovics, A. ( 1988; ). Glycoprotein biosynthesis in Saccharomyces cerevisiae: purification of the α-mannosidase which removes one specific mannose residue from Man9GlcNAc. J Biol Chem 263, 14757–14763.
    [Google Scholar]
  34. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  35. Lesage, G., Tremblay, M., Guimond, J. & Boileau, G. ( 2001; ). Mechanism of Kex2p inhibition by its proregion. FEBS Lett 508, 332–336.[CrossRef]
    [Google Scholar]
  36. Massaad, M. J. & Herscovics, A. ( 2001; ). Interaction of the endoplasmic reticulum alpha 1,2-mannosidase Mns1p with Rer1p using the split-ubiquitin system. J Cell Sci 114, 4629–4635.
    [Google Scholar]
  37. Merril, C. R. ( 1990; ). Gel-staining techniques. In Guide to Protein Purification, pp. 477–488. Edited by M. P. Deutscher. San Diego, CA: Academic Press.
  38. Mora-Montes, H. M., López-Romero, E., Zinker, S., Ponce-Noyola, P. & Flores-Carreón, A. ( 2004; ). Hydrolysis of Man9GlcNAc2 and Man8GlcNAc2 oligosaccharides by a purified α-mannosidase from Candida albicans. Glycobiology 14, 593–598.[CrossRef]
    [Google Scholar]
  39. Mora-Montes, H. M., López-Romero, E., Zinker, S., Ponce-Noyola, P. & Flores-Carreón, A. ( 2006; ). Purification of soluble α1,2-mannosidase from Candida albicans CAI-4. FEMS Microbiol Lett 256, 50–56.[CrossRef]
    [Google Scholar]
  40. Mora-Montes, H. M., Bates, S., Netea, M. G., Díaz-Jiménez, D. F., López-Romero, E., Zinker, S., Ponce-Noyola, P., Kullberg, B. J., Brown, A. J. & other authors ( 2007; ). Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N-glycosylation, cell wall integrity, and normal host–fungus interaction. Eukaryot Cell 6, 2184–2193.[CrossRef]
    [Google Scholar]
  41. Mukhtar, M., Logan, D. A. & Kaufer, N. F. ( 1992; ). The carboxypeptidase Y-encoding gene from Candida albicans and its transcription during yeast-to-hyphae conversion. Gene 121, 173–177.[CrossRef]
    [Google Scholar]
  42. Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K. & Endo, T. ( 2001; ). Mnl1p, an alpha-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276, 8635–8638.[CrossRef]
    [Google Scholar]
  43. Newport, G., Kuo, A., Flattery, A., Gill, C., Blake, J. J., Kurtz, M. B., Abruzzo, G. K. & Agabian, N. ( 2003; ). Inactivation of Kex2p diminishes the virulence of Candida albicans. J Biol Chem 278, 1713–1720.[CrossRef]
    [Google Scholar]
  44. Parlati, F., Dominguez, M., Bergeron, J. J. M. & Thomas, D. Y. ( 1995; ). Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem 270, 244–253.[CrossRef]
    [Google Scholar]
  45. Ramírez, M., Hernández, L. M. & Larriba, G. ( 1989; ). A similar protein portion for two exoglucanases secreted by Saccharomyces cerevisiae. Arch Microbiol 151, 391–398.[CrossRef]
    [Google Scholar]
  46. Rosa, P., Mantovani, S., Rosboch, R. & Huttner, W. B. ( 1992; ). Monensin and brefeldin A differentially affect the phosphorylation and sulfation of secretory proteins. J Biol Chem 267, 12227–12232.
    [Google Scholar]
  47. Spiro, R. G. ( 2004; ). Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61, 1025–1041.[CrossRef]
    [Google Scholar]
  48. Suzuki, T., Hara, I., Nakano, M., Shigeta, M., Nakagawa, T., Kondo, A., Funakoshi, Y. & Taniguchi, N. ( 2006; ). Man2C1, an α-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol. Biochem J 400, 33–41.[CrossRef]
    [Google Scholar]
  49. Tremblay, L. O. & Herscovics, A. ( 2000; ). Characterization of a cDNA encoding a novel human Golgi α1,2-mannosidase (IC) involved in N-glycan biosynthesis. J Biol Chem 275, 31655–31660.[CrossRef]
    [Google Scholar]
  50. Tulsiani, D. R. P. & Touster, O. ( 1987; ). Substrate specificities of rat kidney lysosomal and cytosolic α-D-mannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism. J Biol Chem 262, 6506–6514.
    [Google Scholar]
  51. Vázquez-Reyna, A. B., Ponce-Noyola, P., Calvo-Méndez, C., López-Romero, E. & Flores-Carreón, A. ( 1999; ). Purification and biochemical characterization of two soluble α-mannosidases from Candida albicans. Glycobiology 9, 533–537.[CrossRef]
    [Google Scholar]
  52. Weng, S. & Spiro, R. G. ( 1996; ). Endoplasmic reticulum kifunensine-resistant alpha-mannosidase is enzymatically and immunologically related to the cytosolic alpha-mannosidase. Arch Biochem Biophys 325, 113–123.[CrossRef]
    [Google Scholar]
  53. Wu, Y., Termine, D. J., Swulius, M. T., Moremen, K. W. & Sifers, R. N. ( 2007; ). Human endoplasmic reticulum mannosidase I is subject to regulated proteolysis. J Biol Chem 282, 4841–4849.[CrossRef]
    [Google Scholar]
  54. Yoshihisa, T. & Anraku, Y. ( 1990; ). A novel pathway of import of alpha-mannosidase, a marker enzyme of vacuolar membrane, in Saccharomyces cerevisiae. J Biol Chem 265, 22418–22425.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019315-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019315-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error