GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Free

Abstract

GDP-mannose pyrophosphorylase (GMPP) catalyses the synthesis of GDP-mannose, which is the precursor for the mannose residues in glycoconjugates, using mannose 1-phosphate and GTP as substrates. Repression of GMPP in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. Although several GMPPs have been isolated and characterized in filamentous fungi, the physiological consequences of their actions are not clear. In this study, Af, which is a homologue of yeast //, was identified in the genome. The Af gene was expressed in , and recombinant AfSrb1 was functionally confirmed as a GMPP. By the replacement of the native Af promoter with an inducible promoter, the conditional inactivation mutant strain YJ-gmpp was constructed. The presence of 3 % glucose completely blocked transcription of P–Af, and was lethal to strain YJ-gmpp. Repression of Af expression in strain YJ-gmpp led to phenotypes including hyphal lysis, defective cell wall, impaired polarity maintenance, and branching site selection. Also, rapid germination and reduced conidiation were documented. However, in contrast to yeast, strain YJ-gmpp retained the ability to direct polarity establishment and septation. Our results showed that the Af gene is essential for cell wall integrity, morphogenesis and viability of

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019240-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2730.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019240-0&mimeType=html&fmt=ahah

References

  1. Agaphonov M. O., Packeiser A. N., Chechenova M. B., Choi E. S., Ter-Avanesyan M. D. 2001; Mutation of the homologue of GDP-mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha . Yeast 18:391–402
    [Google Scholar]
  2. Bai C., Xu X. L., Chan F. Y., Lee R. T., Wang Y. 2006; MNN5 encodes an iron-regulated α -1,2-mannosyltransferase important for protein glycosylation, cell wall integrity, morphogenesis, and virulence in Candida albicans . Eukaryot Cell 5:238–247
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Bruneau J.-M., Magnin T., Tagat E., Legrand R., Bernard M., Diaquin M., Fudali C., Latgé J.-P. 2001; Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22:2812–2823
    [Google Scholar]
  5. Carotti C., Ferrario L., Roncero C., Valdivieso M. H., Duran A., Popolo L. 2002; Maintenance of cell integrity in the gas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast 19:1113–1124
    [Google Scholar]
  6. Chabane S., Sarfati J., Ibrahim-Granet O., Du C., Schimidt C., Mouyna I., Prevost M.-C., Calderone R., Latgé J.-P. 2006; Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus . Appl Environ Microbiol 72:3259–3267
    [Google Scholar]
  7. Cove D. J. 1966; The induction and repression of nitrate reductase in the fungus Aspergillus nidulans . Biochim Biophys Acta 113:51–56
    [Google Scholar]
  8. De Groot P. W., Ram A. F., Klis F. M. 2005; Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675
    [Google Scholar]
  9. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
    [Google Scholar]
  10. Elorza M. V., Murgui A., Sentandreu R. 1985; Dimorphism in Candida albicans : contribution of mannoproteins to the architecture of yeast and mycelial cell walls. J Gen Microbiol 131:2209–2216
    [Google Scholar]
  11. Fontaine T., Simenel C., Dubreucq G., Adam O., Delepierre M., Lemoine J., Vorgias C. E., Diaquin M., Latgé J.-P. 2000; Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607
    [Google Scholar]
  12. Garami A., Ilg T. 2001; Disruption of mannose activation in Leishmania mexicana : GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J 20:3657–3666
    [Google Scholar]
  13. Griffin A. M., Poelwijk E. S., Morris V. J., Gasson M. J. 1997; Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase activities involved in acetan biosynthesis in Acetobacter xylinum . FEMS Microbiol Lett 154:389–396
    [Google Scholar]
  14. Hashimoto H., Sakakibara A., Yamasaki M., Yoda K. 1997; Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation. J Biol Chem 272:16308–16314
    [Google Scholar]
  15. Hearn V. M., Sietsma J. H. 1994; Chemical and immunological analysis of the Aspergillus fumigatus cell wall. Microbiology 140:789–795
    [Google Scholar]
  16. Hu W., Sillaots S., Lemieux S., Davison J., Kauffman S., Breton A., Linteau A., Xin C., Bowman J. other authors 2007; Essential gene identification and drug target prioritization in Aspergillus fumigatus . PLoS Pathog 3:e24
    [Google Scholar]
  17. Krappmann S. 2006; Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends Microbiol 14:356–364
    [Google Scholar]
  18. Langfelder K., Gattung S., Brakhage A. A. 2002; A novel method used to delete a new Aspergillus fumigatus ABC transporter-encoding gene. Curr Genet 41:268–274
    [Google Scholar]
  19. Latgé J. P. 1999; Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350
    [Google Scholar]
  20. Latgé J. P. 2001; The pathobiology of Aspergillus fumigatus . Trends Microbiol 9:382–389
    [Google Scholar]
  21. Latgé J.-P., Mouyna I., Tekaia F., Beauvais A., Debeaupuis J. P., Nierman W. 2005; Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus . Med Mycol 43:S15–S22
    [Google Scholar]
  22. Lee J. I., Yu Y. M., Rho Y. M., Park B. C., Choi J. H., Park H. M., Maeng P. J. 2005; Differential expression of the chsE gene encoding a chitin synthase of Aspergillus nidulans in response to developmental status and growth conditions. FEMS Microbiol Lett 249:121–129
    [Google Scholar]
  23. Li H., Zhou H., Luo Y., Ouyang H., Hu H., Jin C. 2007; Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol 64:1014–1027
    [Google Scholar]
  24. Lowry O. H., Rosebrough N. J., Farr A. L., Randal R. J. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  25. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P. 2000; Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889
    [Google Scholar]
  26. Mouyna I., Morelle W., Vai M., Monod M., Lechenne B., Fontaine T., Beauvais A., Sarfati J., Prevost M.-C. other authors 2005; Deletion of GEL2 encoding for a β (1–3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus . Mol Microbiol 56:1675–1688
    [Google Scholar]
  27. Ning B., Elbein A. D. 1999; Purification and properties of mycobacterial GDP-mannose pyrophosphorylase. Arch Biochem Biophys 362:339–345
    [Google Scholar]
  28. Ohta A., Chibana H., Arisawa M., Sudoh M. 2000; The VIG9 gene products from the human pathogenic fungi Candida albicans and Candida glabrata encode GDP-mannose pyrophosphorylase. Biochim Biophys Acta 1475265–272
    [Google Scholar]
  29. Panozzo C., Cornillot E., Felenbok B. 1998; The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem 273:6367–6372
    [Google Scholar]
  30. Romano J., Nimrod G., Ben-Tal N., Shadkchan Y., Baruch K., Sharon H., Osherov N. 2006; Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology 152:1919–1928
    [Google Scholar]
  31. Romero B., Turner G., Olivas I., Laborda F., De Lucas J. R. 2003; The Aspergillus nidulans alcA promoter drives tightly regulated conditional gene expression in Aspergillus fumigatus permitting validation of essential genes in this human pathogen. Fungal Genet Biol 40:103–114
    [Google Scholar]
  32. Sacchetti S., Bartolucci S., Rossi M., Cannio R. 2004; Identification of a GDP-mannose pyrophosphorylase gene from Sulfolobus solfataricus . Gene 332:149–157
    [Google Scholar]
  33. Schoffelmeer E. A., Klis F. M., Sietsma J. H., Cornelissen B. J. 1999; The cell wall of Fusarium oxysporum . Fungal Genet Biol 27:275–282
    [Google Scholar]
  34. Steinbach W. J., Stevens D. A., Denning D. W. 2003; Combination and sequential antifungal therapy for invasive aspergillosis: review of published in vitro and in vivo interactions and 6281 clinical cases from 1966 to 2001. Clin Infect Dis 37:S188–S224
    [Google Scholar]
  35. Upadhyay S., Shaw B. D. 2006; A phosphoglucose isomerase mutant in Aspergillus nidulans is defective in hyphal polarity and conidiation. Fungal Genet Biol 43:739–751
    [Google Scholar]
  36. Waring R. B., May G. S., Morris N. R. 1989; Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130
    [Google Scholar]
  37. Warit S., Walmsley R. M., Stateva L. I. 1998; Cloning and sequencing of the Candida albicans homologue of SRB1/PSA1/VIG9 , the essential gene encoding GDP-mannose pyrophosphorylase in Saccharomyces cerevisiae . Microbiology 144:2417–2426
    [Google Scholar]
  38. Warit S., Zhang N., Short A., Walmsley R. M., Oliver S. G., Stateva L. I. 2000; Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Mol Microbiol 36:1156–1166
    [Google Scholar]
  39. Weidner G., d'Enfert C., Koch A., Mol P. C., Brakhage A. A. 1998; Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′-monophosphate decarboxylase. Curr Genet 33:378–385
    [Google Scholar]
  40. Xia G., Jin C., Zhou J., Yang S., Zhang S., Jin C. 2001; A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. Eur J Biochem 268:4079–4085
    [Google Scholar]
  41. Yoda K., Kawada T., Kaibara C., Fujie A., Abe M., Hashimoto H., Shimizu J., Tomishige N., Noda Y., Yamasaki M. 2000; Defect in cell wall integrity of the yeast Saccharomyces cerevisiae caused by a mutation of the GDP-mannose pyrophosphorylase gene VIG9. Biosci Biotechnol Biochem 64:1937–1941
    [Google Scholar]
  42. Zarrin M., Leeder A. C., Turner G. 2005; A rapid method for promoter exchange in Aspergillus nidulans using recombinant PCR. Fungal Genet Biol 42:1–8
    [Google Scholar]
  43. Zhou H., Hu H., Zhang L., Li R., Ouyang H., Ming J., Jin C. 2007; O -Mannosyltransferase 1 in Aspergillus fumigatus (AfPmt1p) is crucial for cell wall integrity and conidium morphology, especially at an elevated temperature. Eukaryot Cell 6:2260–2268
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019240-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019240-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed