Identification and use of the putative xylanase promoter for the inducible production of recombinant human proteins Free

Abstract

The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate for the production of these molecules, due to its ability to colonize the colon and xylan utilization properties. Here we have identified the putative xylanase promoter. The 5′ region of the corresponding mRNA was determined by 5′RACE analysis and the transcription initiation site was identified 216 bp upstream of the ATG start codon. The putative xylanase promoter was regulated by xylan in a dose- and time-dependent manner, and repressed by glucose. This promoter was subsequently used to direct the controlled expression of a gene encoding the human intestinal trefoil factor (TFF-3) after integration as a single copy into the chromosome of . The resulting strain produced biologically active TFF-3 in the presence of xylan. These findings identify the xylanase operon promoter and show that it can be utilized to direct xylan-inducible expression of heterologous eukaryotic genes in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019109-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3165.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019109-0&mimeType=html&fmt=ahah

References

  1. Baumgart D. C., Carding S. R. 2007; Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640
    [Google Scholar]
  2. Bayley D. P., Rocha E. R., Smith C. J. 2000; Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193:149–154
    [Google Scholar]
  3. Braat H., Rottiers P., Hommes D. W., Huyghebaert N., Remaut E., Remon J. P., van Deventer S. J., Neirynck S., Peppelenbosch M. P., Steidler L. (2006; A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol 4:754–759
    [Google Scholar]
  4. Chen C.-C., Westpheling J. 1998; Partial characterization of the Streptomyces lividans xlnB promoter and its use for expression of a thermostable xylanase from Thermotoga maritima . Appl Environ Microbiol 64:4217–4225
    [Google Scholar]
  5. Coyne M. J., Weinacht K. G., Krinos C. M., Comstock L. E. 2003; Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A 100:10446–10451
    [Google Scholar]
  6. Dignass A., Lynch-Devaney K., Kindon H., Thim L., Podolsky D. K. 1994; Trefoil peptides promote epithelial migration through a transforming growth factor β-independent pathway. J Clin Invest 94:376–384
    [Google Scholar]
  7. Egert M., de Graaf A. A., Smidt H., de Vos W. M., Venema K. 2006; Beyond diversity: functional microbiomics of the human colon. Trends Microbiol 14:86–91
    [Google Scholar]
  8. Farrar M. D., Whitehead T. R., Lan J., Dilger P., Thorpe R., Holland K. T., Carding S. R. 2005; Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan. J Appl Microbiol 98:1191–1197
    [Google Scholar]
  9. Feldhaus M. J., Hwa V., Cheng Q., Salyers A. A. 1991; Use of an Escherichia coli β-glucuronidase gene as a reporter gene for investigation of Bacteroides promoters. J Bacteriol 173:4540–4543
    [Google Scholar]
  10. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  11. Hespell R. B., O'Bryan P. J. 1992; Purification and characterization of an α-l-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl Environ Microbiol 58:1082–1088
    [Google Scholar]
  12. Hespell R. B., Whitehead T. R. 1990; Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 73:3013–3022
    [Google Scholar]
  13. Hespell R. B., Wolf R., Bothast R. 1987; Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol 53:2849–2853
    [Google Scholar]
  14. Jackson C. A., Hoffmann B., Slakeski N., Cleal S., Hendtlass A. J., Reynolds E. C. 2000; A consensus Porphyromonas gingivalis promoter sequence. FEMS Microbiol Lett 186:133–138
    [Google Scholar]
  15. Jeffers M., McDonald W. F., Chillakuru R. A., Yang M., Nakase H., Deegler L. L., Sylander E. D., Rittman B., Bendele A. 2002; A novel human fibroblast growth factor treats experimental intestinal inflammation. Gastroenterology 123:1151–1162
    [Google Scholar]
  16. Manch-Citron J. N., Dey A., Schneider R., Nguyen N. 1999; The translational hop junction and the 5′ transcriptional start site for the Prevotella loescheii adhesin encoded by plaA. Curr Microbiol 38:22–26
    [Google Scholar]
  17. Mashimo H., Wu D. C., Podolsky D. K., Fishman M. C. 1996; Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274:262–265
    [Google Scholar]
  18. Miyazaki K., Miyamoto H., Mercer D. K., Hirase T., Martin J. C., Kojima Y., Flint H. J. 2003; Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B14. J Bacteriol 185:2219–2226
    [Google Scholar]
  19. Salyers A. A., Gherardini F., O'Brien M. 1981; Utilization of xylan by two species of human colonic Bacteroides . Appl Environ Microbiol 41:1065–1068
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1990 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Savage D. C. 1999; Mucosal microbiota. In Mucosal Immunology pp 19–30 Edited by Ogra P., Mestecky J., Lamm M., Strober W., Bienenstock J., McGhee J. San Diego: Academic Press;
    [Google Scholar]
  22. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  23. Steidler L., Wells J. M., Raeymaekers A., Vandekerckhove J., Fiers W., Remaut E. 1995; Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis . Appl Environ Microbiol 61:1627–1629
    [Google Scholar]
  24. Steidler L., Robinson K., Chamberlain L., Schofield K. M., Remaut E., Le Page R. W. F., Wells J. M. 1998; Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66:3183–3189
    [Google Scholar]
  25. Steidler L., Hans W., Schotte L., Neirynck S., Obermeier F., Falk W., Fiers W., Remaut E. 2000; Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355
    [Google Scholar]
  26. Tancula E., Feldhaus M. J., Bedzyk L. A., Salyers A. A. 1992; Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron . J Bacteriol 174:5609–5616
    [Google Scholar]
  27. Thim L., Norris K., Norris F., Nielsen P. F., Bjorn S. E., Christensen M., Petersen J. 1993; Purification and characterization of the trefoil peptide human spasmolytic polypeptide (hSP) produced in yeast. FEBS Lett 318:345–352
    [Google Scholar]
  28. Valentine P. J., Arnold P., Salyers A. A. 1992; Cloning and partial characterization of two chromosomal loci from Bacteroides ovatus that contain genes essential for growth on guar gum. Appl Environ Microbiol 58:1541–1548
    [Google Scholar]
  29. Weaver J., Whitehead T. R., Cotta M. A., Valentine P. C., Salyers A. A. 1992; Genetic analysis of a locus on the Bacteroides ovatus chromosome which contains xylan utilization genes. Appl Environ Microbiol 58:2764–2770
    [Google Scholar]
  30. Whitehead T. R. 1995; Nucleotide sequences of xylan-inducible xylanase and xylosidase/arabinosidase genes from Bacteroides ovatus V975. Biochim Biophys Acta 1244:239–241
    [Google Scholar]
  31. Whitehead T. R., Hespell R. B. 1990; The genes for three xylan-degrading activities from Bacteroides ovatus are clustered in a 3.8-kilobase region. J Bacteriol 172:2408–2412
    [Google Scholar]
  32. Whitman W. B., Coleman D. C., Wiebe W. J. 1998; Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583
    [Google Scholar]
  33. Wilson K. 1997; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology Edited by Ausubel M., Brent R., Kingston R., Moore D., Seidman J., Smith J., Struhl K. New York: Wiley;
    [Google Scholar]
  34. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J.-P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A 80:1101–1105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019109-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019109-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed