1887

Abstract

Tautomycetin (TMC) is a novel activated T-cell-specific immunosuppressive compound with a unique structure, containing an ester bond linkage between a terminal cyclic anhydride moiety and a linear polyketide chain bearing an unusual terminal alkene. A 3 kb gene, , with a deduced product of 1029 amino acid residues, located on the 3′-terminus of an approximately 70 kb contiguous TMC biosynthetic gene cluster, was found to have amino acid sequence homology with bacterial regulatory proteins. database comparisons revealed that TmcN belongs to the large ATP-binding regulators of the LuxR protein family. Gene disruption of from the sp. CK4412 chromosome resulted in significantly reduced antifungal activity against , as well as the absence of TMC. In addition, complementation by an integrative plasmid carrying restored TMC biosynthesis, strongly suggesting that TmcN is a positive regulator of TMC biosynthesis. Gene expression analysis by RT-PCR of the TMC biosynthetic genes revealed that a TmcN mutant strain exhibited reduced expression levels for most of the biosynthetic genes except for its own . It is thus suggested that TmcN is a pathway-specific positive regulator that activates transcription of the TMC biosynthetic pathway genes in sp. CK4412.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018903-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/2912.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018903-0&mimeType=html&fmt=ahah

References

  1. Aparicio J. F., Molnar I., Schwecke T., Konig A., Haydock S. F., Khaw L. E., Staunton J., Leadlay P. F. 1996; Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169:9–16
    [Google Scholar]
  2. Arias P., Fernández-Moreno M. A., Malpartida F. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968
    [Google Scholar]
  3. Bibb M. J. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215
    [Google Scholar]
  4. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  5. Brautaset T., Sekurova O. N., Sletta H., Ellingsen T. E., Strom A. R., Valla S., Zotchev S. B. 2000; Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403
    [Google Scholar]
  6. Chater K. F. 1989; Multi-level regulation of Streptomyces differentiation. Trends Genet 5:372–377
    [Google Scholar]
  7. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. In Biotechnology, vol. 7, Products of Secondary Metabolism pp 57–105 Edited by Kleinkauf H., von Döhren H. Weinheim: VCH;
    [Google Scholar]
  8. Cheng X. C., Kihara T., Ying X., Uramoto M., Osada H., Kusakabe H., Wang B. N., Kobayashi Y., Ko K. other authors 1989; A new antibiotic, tautomycetin. J Antibiot 42:141–144
    [Google Scholar]
  9. Choi S. U., Lee C. K., Hwang Y. I., Kinoshita H., Nihira T. 2004; Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181:294–298
    [Google Scholar]
  10. Choi S.-S., Hur Y.-A., Sherman D. H., Kim E.-S. 2007; Isolation of the biosynthetic gene cluster for tautomycetin, a linear polyketide T cell-specific immunomodulator from Streptomyces sp. CK4412. Microbiology 153:1095–1102
    [Google Scholar]
  11. Choulet F., Gallois A., Aigle B., Mangenot S., Gerbaud C., Truong C., Francou F. X., Borges F., Fourrier C. other authors 2006; Intraspecific variability of the terminal inverted repeats of the linear chromosome of Streptomyces ambofaciens . J Bacteriol 188:6599–6610
    [Google Scholar]
  12. De Schrijver A., De Mot R. 1999; A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology 145:1287–1288
    [Google Scholar]
  13. Demain A. L., Fang A. 1995; Emerging concepts of secondary metabolism in actinomycetes. Actinomycetologica 9:98–117
    [Google Scholar]
  14. Denis F., Brzezinski R. 1991; An improved aminoglycoside resistance gene cassette for use in Gram-negative bacteria and Streptomyces . FEMS Microbiol Lett 81:261–264
    [Google Scholar]
  15. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546
    [Google Scholar]
  16. Haydock S. F., Appleyard A. N., Mironenko T., Lester J., Scott N., Leadlay P. F. 2005; Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology 151:3161–3169
    [Google Scholar]
  17. Henikoff S., Wallace J. C., Brown J. P. 1990; Finding protein similarities with nucleotide sequence databases. Methods Enzymol 183:111–132
    [Google Scholar]
  18. Hopwood D. A. 1988; Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc R Soc Lond B Biol Sci 235:121–138
    [Google Scholar]
  19. Hranueli D., Cullum J., Basrak B., Goldstein P., Long P. F. 2005; Plasticity of the Streptomyces genome-evolution and engineering of new antibiotics. Curr Med Chem 12:1697–1704
    [Google Scholar]
  20. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: The John Innes Foundation;
    [Google Scholar]
  21. Leskiw B. K., Lawlor E. J., Fernández-Abalos J. M., Chater K. F. 1991; TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci U S A 88:2461–2465
    [Google Scholar]
  22. Li W., Wu J., Tao W., Zhao C., Wang Y., He X., Chandra G., Zhou X., Deng Z. other authors 2007; A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett 266:20–28
    [Google Scholar]
  23. Martin J. F., Gutierrez S., Aparicio J. F. 2000; Secondary metabolites. In Encyclopedia of Microbiology , 2nd edn. vol. 4 pp 213–236 Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  24. Molnár I., Aparicio J. F., Haydock S. F., Khaw L. E., Schwecke T., König A., Staunton J., Leadlay P. F. 1996; Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169:1–7
    [Google Scholar]
  25. Myles D. C. 2003; Novel biologically active natural and unnatural products. Curr Opin Biotechnol 14:627–633
    [Google Scholar]
  26. Pabo C. O., Sauer R. T. 1992; Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095
    [Google Scholar]
  27. Richet E., Raibaud O. 1989; MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J 8:981–987
    [Google Scholar]
  28. Sheldon P. J., Busarow S. B., Hutchinson C. R. 2002; Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460
    [Google Scholar]
  29. Shim J. H., Lee H. K., Chang E. J., Chae W. J., Han J. H., Han D. J., Morio T., Yang J. J., Bothwell A., Lee S. K. 2002; Immunosuppressive effects of tautomycetin in vivo and in vitro via T cell-specific apoptosis induction. Proc Natl Acad Sci U S A 99:10617–10622
    [Google Scholar]
  30. Strauch E., Takano E., Baylis H. A., Bibb M. J. 1991; The stringent response in Streptomyces coelicolor A3(2. Mol Microbiol 5:289–298
    [Google Scholar]
  31. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  32. Wietzorrek A., Bibb M. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184
    [Google Scholar]
  33. Wilson D. J., Xue Y., Reynolds K. E., Sherman D. H. 2001; Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae . J Bacteriol 183:3468–3475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018903-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018903-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error