1887

Abstract

The success of depends on its ability to survive within host macrophages. Here, avoids the acidic, hydrolytically competent environment of the phagolysosome by arresting phagosome maturation. Having shown previously that a mutant deficient in lipoprotein signal peptidase (LspA) is strongly attenuated in a mouse model of infection, we now studied putative mechanisms involved in attenuation of the  : :  mutant at a cellular level. In this work we investigated the ability of the mutant to interfere with two host defence mechanisms, i.e. Toll-like receptor (TLR)2-dependent immune response and phagosome maturation. While mycobacterial lipoproteins have been reported to trigger a TLR2 signalling pathway critical for innate immune responses, we found that growth control of the  : :  mutant was independent of TLR2. In addition, the  : :  mutant arrested phagosome maturation to an extent similar to that of the wild-type, as measured by lysosomal-associated membrane protein 1 (LAMP1) co-localization and intraphagosomal pH. These observations demonstrate severe attenuation even in the presence of arrested phagosome maturation, and point to a role for the early phagosome in growth restriction of the mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018895-0
2008-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/2991.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018895-0&mimeType=html&fmt=ahah

References

  1. Anes E., Kuhnel M. P., Bos E., Moniz-Pereira J., Habermann A., Griffiths G. 2003; Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802
    [Google Scholar]
  2. Antelmann H., Tjalsma H., Voigt B., Ohlmeier S., Bron S., van Dijl J. M., Hecker M. 2001; A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502
    [Google Scholar]
  3. Armstrong J. A., Hart P. D. 1971; Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740
    [Google Scholar]
  4. Banaiee N., Kincaid E. Z., Buchwald U., Jacobs W. R. Jr, Ernst J. D. 2006; Potent inhibition of macrophage responses to IFN- γ by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J Immunol 176:3019–3027
    [Google Scholar]
  5. Berthet F. X., Lagranderie M., Gounon P., Laurent-Winter C., Ensergueix D., Chavarot P., Thouron F., Maranghi E., Pelicic V. other authors 1998; Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282:759–762
    [Google Scholar]
  6. Bigi F., Gioffre A., Klepp L., Santangelo M. P., Alito A., Caimi K., Meikle V., Zumárraga M., Taboga O. other authors 2004; The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis . Microbes Infect 6:182–187
    [Google Scholar]
  7. Blander J. M., Medzhitov R. 2004; Regulation of phagosome maturation by signals from Toll-like receptors. Science 304:1014–1018
    [Google Scholar]
  8. Blander J. M., Medzhitov R. 2006; On regulation of phagosome maturation and antigen presentation. Nat Immunol 7:1029–1035
    [Google Scholar]
  9. Brightbill H. D., Libraty D. H., Krutzik S. R., Yang R. B., Belisle J. T., Bleharski J. R., Maitland M., Norgard M. V., Plevy S. E. other authors 1999; Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285:732–736
    [Google Scholar]
  10. Bryk R., Gold B., Venugopal A., Sing J., Samy R., Pupek K., Cao H., Popescu C., Gurney M. other authors 2008; Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3:137–145
    [Google Scholar]
  11. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267
    [Google Scholar]
  12. Chua J., Vergne I., Master S., Deretic V. 2004; A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr Opin Microbiol 7:71–77
    [Google Scholar]
  13. Clemens D. L., Horwitz M. A. 1995; Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181:257–270
    [Google Scholar]
  14. Clemens D. L., Horwitz M. A. 1996; The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J Exp Med 184:1349–1355
    [Google Scholar]
  15. Clemens D. L., Lee B. Y., Horwitz M. A. 2000; Mycobacterium tuberculosis and Legionella pneumophila phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect Immun 68:5154–5166
    [Google Scholar]
  16. Crowle A. J., Dahl R., Ross E., May M. H. 1991; Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59:1823–1831
    [Google Scholar]
  17. de Chastellier C., Thilo L. 2006; Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles. Cell Microbiol 8:242–256
    [Google Scholar]
  18. Dev I. K., Ray P. H. 1984; Rapid assay and purification of a unique signal peptidase that processes the prolipoprotein from Escherichia coli B. J Biol Chem 259:11114–11120
    [Google Scholar]
  19. De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E. III 2000; The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257
    [Google Scholar]
  20. Doz E., Rose S., Nigou J., Gilleron M., Puzo G., Erard F., Ryffel B., Quesniaux V. F. J. 2007; Acylation determines the Toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J Biol Chem 282:26014–26025
    [Google Scholar]
  21. Fratti R. A., Backer J. M., Gruenberg J., Corvera S., Deretic V. 2001; Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154:631–644
    [Google Scholar]
  22. Fratti R. A., Chua J., Vergne I., Deretic V. 2003; Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100:5437–5442
    [Google Scholar]
  23. Gehring A. J., Dobos K. M., Belisle J. T., Harding C. V., Boom W. H. 2004; Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol 173:2660–2668
    [Google Scholar]
  24. Gilleron M., Quesniaux V. F. J., Puzo G. 2003; Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem 278:29880–29889
    [Google Scholar]
  25. Hackam D. J., Rotstein O. D., Zhang W., Gruenheid S., Gros P., Grinstein S. 1998; Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 188:351–364
    [Google Scholar]
  26. Hasan Z., Schlax C., Kuhn L., Lefkovits I., Young D., Thole J., Pieters J. 1997; Isolation and characterization of the mycobacterial phagosome: segregation from the endosomal/lysosomal pathway. Mol Microbiol 24:545–553
    [Google Scholar]
  27. Hostetter J. M., Steadham E. M., Haynes J. S., Bailey T. B., Cheville N. F. 2002; Cytokine effects on maturation of the phagosomes containing Mycobacterium avium subspecies paratuberculosis in J774 cells. FEMS Immunol Med Microbiol 34:127–134
    [Google Scholar]
  28. Hunt D. M., Saldanha J. W., Brennan J. F., Benjamin P., Strom M., Cole J. A., Spreadburry C. L., Buxton R. S. 2008; Single nucleotide polymorphisms that cause structural changes in the cyclic AMP receptor protein transcriptional regulator of the tuberculosis vaccine strain Mycobacterium bovis BCG alter global gene expression without attenuating growth. Infect Immun 76:2227–2234
    [Google Scholar]
  29. Huynh K. K., Grinstein S. 2007; Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 71:452–462
    [Google Scholar]
  30. Indrigo J., Hunter R. L. Jr, Actor J. K. 2003; Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:2049–2059
    [Google Scholar]
  31. Jin M. S., Kim E., Heo J. Y., Lee M. E., Kim H. M., Paik S. G., Lee H., Lee J. O. 2007; Crystal structure of the TLR1–TLR2 heterodimer induced by binding of tri-acylated lipopeptide. Cell 130:1071–1082
    [Google Scholar]
  32. Kanzler H., Barrat F. J., Hessel E. M., Coffman R. L. 2007; Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13:552–559
    [Google Scholar]
  33. Kelley V. A., Schorey J. S. 2003; Mycobacterium's arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Mol Biol Cell 14:3366–3377
    [Google Scholar]
  34. Lamichhane G., Zignol M., Blades N. J., Geiman D. E., Dougherty A., Grosset J., Broman K. W., Bishai W. R. 2003; A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 100:7213–7218
    [Google Scholar]
  35. MacGurn J. A., Cox J. S. 2007; A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun 75:2668–2678
    [Google Scholar]
  36. MacMicking J. D., Taylor G. A., McKinney J. D. 2003; Immune control of tuberculosis by IFN- γ-inducible LRG-47. Science 302:654–659
    [Google Scholar]
  37. Master S. S., Rampini S. K., Davis A. S., Keller C., Ehlers S., Springer B., Timmins G., Sander P., Deretic V. 2008; Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3:224–232
    [Google Scholar]
  38. Masuda K., Matsuyama S., Tokuda H. 2002; Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc Natl Acad Sci U S A 99:7390–7395
    [Google Scholar]
  39. Mawuenyega K. G., Forst C. V., Dobos K. M., Belisle J. T., Chen J., Bradbury E. M., Bradbury A. R., Chen X. 2005; Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 16:396–404
    [Google Scholar]
  40. Noss E. H., Pai R. K., Sellati T. J., Radolf J. D., Belisle J., Golenbock D. T., Boom W. H., Harding C. V. 2001; Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis . J Immunol 167:910–918
    [Google Scholar]
  41. Oh Y. K., Straubinger R. M. 1996; Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome–lysosome interaction. Infect Immun 64:319–325
    [Google Scholar]
  42. Pethe K., Swenson D. L., Alonso S., Anderson J., Wang C., Russell D. G. 2004; Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci U S A 101:13642–13647
    [Google Scholar]
  43. Ramachandra L., Noss E., Boom W. H., Harding C. V. 2001; Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J Exp Med 194:1421–1432
    [Google Scholar]
  44. Reiling N., Holscher C., Fehrenbach A., Kroger S., Kirschning C. J., Goyert S., Ehlers S. 2002; Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis . J Immunol 169:3480–3484
    [Google Scholar]
  45. Rezwan M., Grau T., Tschumi A., Sander P. 2007a; Lipoprotein synthesis in mycobacteria. Microbiology 153:652–658
    [Google Scholar]
  46. Rezwan M., Laneelle M. A., Sander P., Daffé M. 2007b; Breaking down the wall: fractionation of mycobacteria. J Microbiol Methods 68:32–39
    [Google Scholar]
  47. Rock F. L., Hardiman G., Timans J. C., Kastelein R. A., Bazan J. F. 1998; A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95:588–593
    [Google Scholar]
  48. Romano M., Roupie V., Wang X. M., Denis O., Jurion F., Adnet P. Y., Laali R., Huygen K. 2006; Immunogenicity and protective efficacy of tuberculosis DNA vaccines combining mycolyl-transferase Ag85A and phosphate transport receptor PstS-3. Immunology 118:321–332
    [Google Scholar]
  49. Rooyakkers A. W. J., Stokes R. W. 2005; Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages. Microb Pathog 39:57–67
    [Google Scholar]
  50. Russell D. G. 2001; Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577
    [Google Scholar]
  51. Russell D. G., Purdy G. E., Owens R. M., Rohde K. H., Yates R. M. 2005; Mycobacterium tuberculosis and the four-minute phagosome. ASM News 71:459–463
    [Google Scholar]
  52. Saleh M. T., Belisle J. T. 2000; Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182:6850–6853
    [Google Scholar]
  53. Sander P., Rezwan M., Walker B., Rampini S. K., Kroppenstedt R. M., Ehlers S., Keller C., Keeble J. R., Hagemeier M. other authors 2004; Lipoprotein processing is required for virulence of Mycobacterium tuberculosis . Mol Microbiol 52:1543–1552
    [Google Scholar]
  54. Sankaran K., Wu H. C. 1994; Lipid modification of bacterial prolipoprotein: transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269:19701–19706
    [Google Scholar]
  55. Sassetti C. M., Rubin E. J. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994
    [Google Scholar]
  56. Sassetti C. M., Boyd D. H., Rubin E. J. 2001; Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98:12712–12717
    [Google Scholar]
  57. Schaible U. E., Sturgill-Koszycki S., Schlesinger P. H., Russell D. G. 1998; Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296
    [Google Scholar]
  58. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704
    [Google Scholar]
  59. Smith I. 2003; Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496
    [Google Scholar]
  60. Stewart G. R., Patel J., Robertson B. D., Rae A., Young D. B. 2005; Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog 1:269–278
    [Google Scholar]
  61. Sturgill-Koszycki S., Schlesinger P. H., Chakraborty P., Haddix P. L., Collins H. L., Fok A. K., Allen R. D., Gluck S. L., Heuser J., Russell D. G. 1994; Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681
    [Google Scholar]
  62. Sturgill-Koszycki S., Schaible U. E., Russell D. G. 1996; Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 15:6960–6968
    [Google Scholar]
  63. Sulzenbacher G., Canaan S., Bordat Y., Neyrolles O., Stadthagen G., Roig-Zamboni V., Rauzier J., Maurin D., Laval F. other authors 2006; LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis . EMBO J 25:1436–1444
    [Google Scholar]
  64. Sutcliffe I. C., Harrington D. J. 2004; Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev 28:645–659
    [Google Scholar]
  65. Sutcliffe I. C., Russell R. R. 1995; Lipoproteins of Gram-positive bacteria. J Bacteriol 177:1123–1128
    [Google Scholar]
  66. Theus S., Eisenach K., Fomukong N., Silver R. F., Cave M. D. 2007; Beijing family Mycobacterium tuberculosis strains differ in their intracellular growth in THP-1 macrophages. Int J Tuberc Lung Dis 11:1087–1093
    [Google Scholar]
  67. Underhill D. M., Ozinsky A., Hajjar A. M., Stevens A., Wilson C. B., Bassetti M., Aderem A. 1999; The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815
    [Google Scholar]
  68. Vandal O. H., Gelb M. H., Ehrt S., Nathan C. 2006; Cytosolic phospholipase A2 enzymes are not required by mouse bone marrow-derived macrophages for the control of Mycobacterium tuberculosis in vitro. Infect Immun 74:1751–1756
    [Google Scholar]
  69. Vergne I., Chua J., Deretic V. 2003; Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198:653–659
    [Google Scholar]
  70. Vergne I., Fratti R. A., Hill P. J., Chua J., Belisle J., Deretic V. 2004; Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 15:751–760
    [Google Scholar]
  71. Vergne I., Chua J., Lee H.-H., Lucas M., Belisle J., Deretic V. 2005; Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 102:4033–4038
    [Google Scholar]
  72. Via L. E., Deretic D., Ulmer R. J., Hibler N. S., Huber L. A., Deretic V. 1997; Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272:13326–13331
    [Google Scholar]
  73. Via L. E., Fratti R. A., McFalone M., Pagan-Ramos E., Deretic D., Deretic V. 1998; Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111:897–905
    [Google Scholar]
  74. Vieira O. V., Botelho R. J., Grinstein S. 2002; Phagosome maturation: aging gracefully. Biochem J 366:689–704
    [Google Scholar]
  75. Wagner D., Maser J., Moric I., Boechat N., Vogt S., Gicquel B., Lai B., Reyrat J. M., Bermudez L. 2005; Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. Microbiology 151:323–332
    [Google Scholar]
  76. Walburger A., Koul A., Ferrari G., Nguyen L., Prescianotto-Baschong C., Huygen K., Klebl B., Thompson C., Bacher G., Pieters J. 2004; Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:1800–1804
    [Google Scholar]
  77. Wang B., Henao-Tamayo M., Harton M., Ordway D., Shanley C., Basaraba R. J., Orme I. M. 2007; A Toll-like receptor-2-directed fusion protein vaccine against tuberculosis. Clin Vaccine Immunol 14:902–906
    [Google Scholar]
  78. Xu S., Cooper A., Sturgill-Koszycki S., van Heyningen T., Chatterjee D., Orme I., Allen P., Russell D. G. 1994; Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153:2568–2578
    [Google Scholar]
  79. Yates R. M., Russell D. G. 2005; Phagosome maturation proceeds independently of stimulation of Toll-like receptors 2 and 4. Immunity 23:409–417
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018895-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018895-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error